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1 Introduction and examples

1.1 Introduction

Bayesian inference: the process of learning by updating prior probabilistic beliefs in light of new informa-
tion. Data analysis tools built on these foundations are known as Bayesian methods.

1.1.1 Bayesian learning framework

The numerical values of both the population characteristics and the dataset are uncertain. After a dataset y is
obtained, the information it contains can be used to decrease our uncertainty about the population characteristics.
Quantifying this change in uncertainty is the purpose of Bayesian inference.

In fact, we want to estimate a parameter θ ∈ Θ from a dataset y ∈ Y .

Y: The sample space, the set of all possible datasets, from which a single dataset y will result.
Θ: The parameter space, the set of possible parameter values, from which we identify the value that best
represents the true characteristics.
p(θ): The prior distribution, describes our belief that θ represents the true characteristics. (for each θ ∈ Θ)
P (y | θ): The sampling model, describes the probability that of a specific dataset given a parameter. (for
each θ ∈ Θ and y ∈ Y)
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The posterior distribution is obtained from the prior distribution and sampling model via Bayes’ rule:

p(θ | y) = p(y | θ)p(θ)∫
Θ p(y | θ̃)p(θ̃) dθ̃

.

Note that the denominator is constant and doesn’t need to be computed, since we can just normalize our
posterior distribution such that P (θ | y) for all Θ sums up to 1. Thus we commonly write

p(θ | y) ∝ p(y | θ)p(θ).

1.1.2 Versus frequentist learning

The difference between Bayesian learning and frequentist learning is the consideration of prior beliefs about
parameters. In standard Maximum Likelihood Estimation (MLE), we select the parameter that is most likely
to have generated the observed data:

θML = argmax
θ

p(y | θ).

Using Bayesian Maximum A Posteriori Estimation, we select θ that is most likely given the observed data.
The difference is that our measure of “likelihood given the data” is influenced by prior belief about θ:

θMAP = argmax
θ

p(θ | y) = argmax
θ

p(y | θ)p(θ).

Note that with an uninformative prior θ ∼ Uniform, the MAP estimate is the same as the ML estimate.
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1.2 Why Bayes?

1. If p(θ) approximates our beliefs, then the fact that p(θ | y) is optimal under p(θ) means that it will also
generally serve as a good approximation to what our posterior beliefs should be.

2. We may want to use Bayes’ rule to explore how the data would update the beliefs of a variety of people
with differing prior opinions.

3. In many complicated statistical problems there are no obvious non-Bayesian methods of estimation or infer-
ence. In these situations, Bayes’ rule can be used to generate estimation procedures, and the performance
of these procedures can be evaluated using non-Bayesian criteria.

4. As an approach to probability and statistics:
Bayesian methods have excellent practical benefits as data analysis tools:
(a). Even if prior probabilities are not exactly quantifiable, approximations of p(θ) and p(θ | y) are still

useful for analyzing how rational learners would change beliefs
(b). Bayesian methods can represent principled ways of doing analysis when there are no alternative methods

5. As models of cognition:
An appeal of Bayesian learning is that it is also cognitively intuitive. Humans have beliefs about the
world, whose uncertainty can be expressed probabilistically. Then, given data, these beliefs are rationally
updated.
Bayesianism is not without its detractors, however. Some critics argue that the evidence that Bayesian
analysis is weak, and that sufficiently sophisticated models are unfalsifiable. See [Bowers & Davis (2012)],
comment by [Griffiths, Chater, Norris, Pouget (2012)], reply by [Bowers & Davis (2012)].
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1.2.1 Sensitivity analysis

If we change belief in prior, we get different posterior distributions. The more “peaked” prior is, the less
peaked the posterior will be given a Y = 0 (and the less the Bayesian solution will approximate the ML
estimate).

Quantify how changes in the prior beliefs affect our posterior estimates:

Recall the expectation and variance of Beta distributions. If θ ∼ Beta(α, β), then

E(θ) =
α

α + β
, Var(θ) =

αβ

(α + β)2(α + β + 1)
.

Due to the properties of these functions, we can parameterize the Beta distribution alternatively with
Expectation: θ0 = α

α+β and Precision: w = a+ b.

Since (θ | Y = y) ∼ Beta(a+ y, b+ n− y),

E(θ | Y = y) =
a+ y

a+ b+ n
=

n

a+ b+ n

y

n
+

a+ b

a+ b+ n

a

a+ b
=

n

w + n
ȳ +

w

w + n
θ0.

The posterior expectation is a weighted average of the sample mean ȳ and the prior expectation θ0. In terms of
estimating θ, θ0 represents our prior guess at the true value of θ and w represents our confidence in this guess,
expressed on the same scale as the sample size.

We can compute such a posterior distribution for a wide range of θ0 and w values to perform a sensitivity
analysis, an exploration of how posterior information is affected by differences in prior opinion.
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1.2.2 Comparison to non-Bayesian methods

When we use the frequentist maximum likelihood estimator, we get an estimated θML = 0. Since our
estimate is subject to sampling error, we commonly construct confidence intervals for these estimates.

The Wald interval is a commonly used confidene interval for a population proportion. However, it is not
meant to be used for small sample sizes or situations in which the observed proportion is close to (or equals) 0 or
1, since in these cases the error of a binomially-distributed observation is not at all like the normal distribution
For an observation Y = 20, for example, the Wald CI is, regardless of the level of confidence, just 0. We
wouldn’t want to say with 99.999% confidence that the population mean is 0, given our small sample size.

The previous Bayesian estimate, however, works well for both small and large n. With small n, the estimator
allows us to encode prior beliefs about the true proportion. With w and θ0 as before:

θ̂ = E(θ | Y = y) =
n

n+ w

y

n
+

w

n+ w
θ0.

Notice that this is kind of an average between the prior expectation θ0 and the observed proportion of the data y
n ,

weighted by the amount of data n. For large n, θ̂ becomes dominated by the data, regardless of prior estimate
and confidence.

Theoretical details on the properties of Bayesian estimators are covered later in Section 5.4.
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1.2.3 Building a predictive model

A brief synopsis of an example is in Chapter 9, where we want to build a predictive model of diabetes
progression from 64 variables such as age, sex and BMI.

We will first estimate the parameters in a regression model using a “training” dataset consisting of mea-
surements from 342 patients. We will then evaluate the predictive performance of the estimated regression
model using a separate “test” dataset of 100 patients.

Sampling model and parameter space
Consider linear regression models of the form

Yi = β1xi,1 + β2xi,2 + · · ·+ β64xi,64 + σϵi

Prior distribution
Defining a joint prior probability distribution for 65 parameters ⇒ near-impossible task.
Use a prior distribution that only represents some aspects of our prior beliefs.
Posterior distribution
Given data y = (y1, · · · , y342) and X = (x1, · · · ,x342), the posterior distribution p(β | y,X) can be
computed and used to obtain Pr(βj ̸= 0 | y,X)for each regression coefficient j.
Predictive performance and comparison to non-Bayesian methods
We can evaluate how well this model performs by using it to predict the test data:
Let β̂Bayes = E[β | y,X] be the posterior expectation of β, and let Xtest be the test dataset.
Use ŷtest = Xβ̂Bayes to compute a predicted value for each of the 100 observations.
The non-Bayesian approach (most commonly: the ordinary least squares (OLS) estimate): the value β̂ols
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of β that minimizes the sum of squares of the residuals (SSR) for the observed data:

SSR(β) =
n∑

i=1

(yi − βTxi)
2,

and is given by the formula β̂ols = (XTX)−1XTy.
Predictions for the test data based on this estimate are given by Xβ̂ols.
Thus, Compare

∑
(ytest,i − ŷtest,i)

2/100

Result
Bayesian regression does better than standard linear regression. The standard ordinary least squares (OLS)
estimate of β does worse than the Bayesian method on the test set.
This is due to overfitting, and OLS’s “inability to recognize when the sample size is too small to accurately
estimate the regression coefficients.”
The standard remedy to this problem is to fit a “sparse” regression model, in which some or many of the
regression coefficients are set to zero.
1. One method of choosing which coefficients to set to zero is the Bayesian approach described above.
2. Another popular method is the “lasso”. The lasso estimate is the value β̂lasso of β that minimizes

SSR(β : λ), a modified version of the sum of squared residuals:

SSR(β : λ) =
n∑

i=1

(yi − xT
i β)

2 + λ

p∑
j=1

|βj| .

12



2 Belief, probability and exchangeability

1. Discuss what properties a reasonable belief function should have, show probabilities have these properties.
2. Review the basic machinery of discrete and continuous random variables and probability distributions.
3. Explore the link between independence and exchangeability.

2.1 Belief functions and probabilities

2.1.1 Belief functions

Let F,G, andH be events. A belief function Be(·) should correspond to certain intuitions about our beliefs
about the likelihood of events.

1. Be(F ) > Be(G) means we would prefer to bet F is true than G is true
2. Be(F | H) > Be(G | H) means that if we knew that H were true, then we would prefer to bet that F is

also true than bet G is also true.
3. Be(F | G) > Be(F | H) means that if we were forced to bet on F , we would prefer to do it under the

condition that G is true rather than H is true

2.1.2 Axioms of beliefs

Any function that is to numerically represent our beliefs may have the following properties:

1. (B1) Be(not H | H) ≤ Be(F | H) ≤ Be(H | H)
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2. (B2) Be(F or G | H) ≥ max{Be(F | H),Be(G | H)}
3. (B3) Be(F and G | H) can be derived from Be(G | H) and Be(F | G and H)

2.1.3 Axioms of probability

Probability functions have axioms that satisfy our notions of belief:

1. (P1) Contradictions and tautologies: 0 = P (not H | H) ≤ P (F | H) ≤ P (H | H) = 1

2. (P2) Addition rule: P (F ∪G | H) = P (F | H) + P (G | H) if F ∩G = ∅
3. (P3) Multiplication rule: P (F ∩G | H) = P (G | H)P (F | G ∩H)

Note that the axioms of probability and theorems discussed in this section are the same whether you subscribe
to a Bayesian or frequentist interpretation of probability.

2.2 Events, partitions and Bayes’ rule

Consider a set H, which is the “set of all possible truths.” We can partition H into discrete subsets
{H1, . . . , Hk}, where only one subset consists of the truth.

Definition 2.1 (Partition) A collection of sets {H1, · · · , Hk} is a partition of another set H if

1. the events are disjoint, which we write as Hi ∩Hj = ∅ for i ̸= j

2. the union of the sets is H, which we write as ∪K
k=1Hk = H.

In the context of identifying which of several statements is true, if H is the set of all possible truths and
{H1, · · · , Hk} is a partition of H, then exactly one out of {H1, · · · , Hk} contains the truth.

14



2.2.1 Partitions and probability

We can assign probabilities whether each of these sets contains the truth. First, some event in H is true, so
P (H) = 1. Let E be some observation (in this case related to the truth of one Hi). Then,

Rule of total probability:
∑

i P (Hi) = 1

Marginal probability: P (E) =
∑

i P (E ∩Hi) =
∑

i P (E | Hi)P (Hi)

The total probability of an event occurring is the sum of all of its probabilities under the possible
partitions of truths

Bayes’ rule: P (Hi | E) =

likelihood︷ ︸︸ ︷
P (E | Hi)

prior︷ ︸︸ ︷
P (Hi)

P (E)
=

P (E | Hi)P (Hi)∑K
k=1 P (E | Hk)P (Hk)

2.3 Independence

Definition 2.2 (Independence)

Two events F and G are independent if P (F ∩G) = P (F )P (G).
Two events F and G are conditionally independent given H if P (F ∩G | H) = P (F | H)P (G | H).

By Axiom P3, the following is always true: P (F ∩ G | H) = P (G | H)P (F | G ∩H). If F and G are
conditionally independent given H , then we must have:

15



Pr(G | H) Pr(F | H ∩G) always
= Pr(F ∩G | H)

independence
= Pr(F | H) Pr(G | H)

Pr(G | H) Pr(F | H ∩G) = Pr(F | H) Pr(G | H)

Pr(F | H ∩G) = Pr(F | H).

TP (F | H ∩G) = P (F | H) if we know about H , and F and G are conditionally independent given H , then
knowing G does not change belief about H . This is a key property leveraged in Bayesian networks.

2.4 Random variables

In Bayesian inference, a random variable is defined as an unknown numerical quantity about which we make
probability statements. Additionally, a fixed but unknown population parameter is also a random variable.

2.4.1 Discrete random variables

A random variable Y is discrete if the set of all its possible valuesY is countable, i.e. they can be enumerated
Y = {y1, y2, . . . }.Examples include the binomial and Poisson distributions.

Discrete random variables have a probability mass function (PMF): f(y) = P (Y = y) which assigns a
certain probability to every discrete point in its sample space. From this probability mass function, a cumulative
distribution function (CDF) is also defined:

F (y) = P (Y ≤ y) =
∑
yi≤y

f(yi)

16



Or: The event that the outcome Y of our survey has the va lue y is expressed as {Y = y}. For each y ∈ Y ,
our shorthand notation for Pr(Y = y) will be p(y).

This function of y is called the probability density function (pdf) of Y , and it has the following properties:

1. 0 ≤ p(y) ≤ 1 for all y ∈ Y
2.
∑

y∈Y p(y) = 1

3. General probability statements about Y can be derived from the pdf. For example, Pr(Y ∈ A) =
∑
y∈A

p(y)

4. If A and B are disjoint subsets of Y , then

Pr(Y ∈ A or Y ∈ B) ≡ Pr(Y ∈ A ∪B) = Pr(Y ∈ A) + Pr(Y ∈ B) =
∑
y∈A

p(y) +
∑
y∈B

p(y).

2.4.2 Continuous random variables

Y is continuous if Y can take any value in an interval. Examples include the normal and beta distributions.
The probability of Y taking a single value in the sample space is 0. So instead we describe such distributions
with probability density functions (PDFs) f(y), which must be integrated over an interval to obtain a probability:

P (a ≤ y ≤ b) =

∫ b

a

f(y) dy.

This function is called the probability density function of Y , and its properties are similar to those of a pdf for
a discrete random variable: 0 ≤ p(y) for all y ∈ Y ;

∫
y∈R p(y) dy = 1.
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These variables also have cumulative distribution function (CDFs):

F (y) = P (Y ≤ y) =

∫ y

−∞
f(x) dx

F (∞) = 1, F (−∞) = 0, and F (b) ≤ F (a) if b < a. Probabilities of events can be derived from the cdf:

Pr(Y > a) = 1− F (a), Pr(a < Y ≤ b) = F (b)− F (a)

2.4.3 Descriptions of distributions

In the same way that we use the mean, mode, and median to describe samples, we can use them to describe
distributions. Notice that for many distributions, these quantities are not the same.

Mean or expectation of an unknown quantity Y

E[Y ] =
∑

y∈Y yp(y) if Y is discrete; E[Y ] =
∫
y∈Y yp(y)dy if Y is continuous.

Mode: the most probable value of Y

Median: the value of Y in the middle of the distribution.”

We also use variance and quantiles to measure the spread of distributions.

Variance
Var[Y ] = E[(Y − E[Y ])2] = E[Y 2 − 2Y E[Y ] + E[Y ]2]

= E[Y 2]− 2E[Y ]2 + E[Y ]2

= E[Y 2]− E[Y ]2.
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2.5 Joint distributions

2.5.1 Discrete random variables

Let Y1 and Y2 be random variables with sample spaces Y1 and Y2.

The joint pdf or joint density of Y1 and Y2 is defined as:

pY1,Y2
(y1, y2) = p(y1, y2) = P ({Y1 = y1} ∩ {Y2 = y2}) for y1 ∈ Y1, y2 ∈ Y2

The marginal density of Y1 is obtained by summing over all possible values of Y2:

pY1
(y1) = p(y1) ≡ Pr(Y1 = y1) =

∑
y2∈Y2

Pr({Y1 = y1} ∩ {Y2 = y2}) =
∑
y2∈Y2

p(y1, y2) =
∑
y2∈Y2

p(y1 | y2)p(y2).

The conditional density of Y2 given {Y1 = y1} is

pY2|Y1
(y2 | y1) = p(y2 | y1) =

Pr({Y1 = y1} ∩ {Y2 = y2})
Pr(Y1 = y1)

=
pY1Y2

(y1, y2)

pY1
(y1)

=
p(y1, y2)

p(y1)
.

Notice that given the joint density p(y1, y2), we can calculate marginal and conditional densities{p(y1), p(y2), p(y1 |
y2), p(y2 | y1)} by simply summing up the relevant variables. Additionally, given p(y1) and p(y2 | y1), (or the
reverse), we can reconstruct the joint distribution. However, given only marginal densities p(y1) and p(y2), we
can’t reconstruct the joint distribution, since we don’t know whether the events are independent.
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2.5.2 Continuous random variables

In the continuous case, the probability density function is a function of y1 and y2 such that the CDF is

F (y1, y2) =

∫ y1

−∞

∫ y2

−∞
p(y1, y2) dy2 dy1.

Obtaining the marginal densities can be done by integrating out the irrelevant variable:

p(y1) =

∫ ∞

−∞
p(y1, y2) dy2, p(y2) =

∫ ∞

−∞
p(y1, y2) dy1

With the marginal densities, you can compute the conditional densities

p(y2 | y1) = p(y1, y2)/p(y1).

2.5.3 Bayes’ rule and parameter estimation

p(θ), beliefs about θ; p(y | θ), beliefs about Y for each value of θ.

Having observed{Y = y}, we need to compute our updated beliefs about θ: p(θ | y) = p(θ, y)/p(y) = p(θ)p(y | θ)/p(y).
This conditional density is called the posterior density of θ.

As a function of θ, p(θ | y) = p(θ)p(y | θ)∫
θ p(θ)p(y | θ)dθ

∝ p(θ)p(y | θ).
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2.6 Independent random variables

Let Y1, . . . , Yn be random variables dependent on a common parameter θ. Then Y1 . . . , Yn are conditionally
independent given θ if

p(y1, . . . , yn | θ) = p(y1 | θ)× · · · × p(yn | θ).

Note this extends naturally from the definition of independent of two random variables, P (A ∩ B) =

P (A)P (B). Thus, knowing about any Yi does not give any information about the other Yj. Lastly, the joint
density of these variables can be defined as

p(y1, . . . , yn | θ) =
n∏

i=1

p(yi | θ).

We say that Y1, . . . , Yn are conditionallly independent and identically distributed (i.i.d.):

Y1, . . . , Yn | θ ∼ i.i.d. p(y | θ).

2.7 Exchangeability

In many situations with random variables, we would intuit that the specific order of observation of these
random variables isn’t important. Eg, consider a random sample of 3 participants from an infinite population
which may or may not have a property (1 or 0). It makes sense that p(0, 0, 1) = p(1, 0, 0) = p(0, 1, 0). since the
likelihood of a person having the property or not is θ, regardless of the sample. This property is exchangeability.
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Definition 2.3 Exchangable. Let Y1, . . . , Yn be random variables. Let p(y1, . . . , yn) be the joint density
of Y1, . . . , Yn. If p(y1, . . . , yn) = p(yπ1

, . . . , yπn
) for all permutations π of {1, . . . , n}, then Y1, . . . , Yn are

exchangable.

Claim: If θ ∼ p(θ) and Y1, . . . Yn are conditionally i.i.d. given θ, then marginally (unconditionally on θ),
Y1, . . . Yn are exchangeable.

Proof: Suppose Y1, . . . , Yn are conditionally i.i.d. given some unknown parameter θ.

Then for any permutation π of {1, . . . , n} and any set of values (y1, . . . , yn) ∈ Yn,

p(y1, . . . , yn) =

∫
p(y1, . . . , yn | θ)p(θ) dθ (definition of marginal probability)

=

∫ ( n∏
i=1

p(yi | θ)

)
p(θ) dθ (Yi’s are conditionally i.i.d.)

=

∫ ( n∏
i=1

p(yπi
| θ)

)
p(θ) dθ (product does not depend on order)

= p(yπ1
, . . . , yπn

). (definition of marginal probability)

Classical assumption of Bernoulli variables X1, X2, . . . , Xn as outcomes of the same experiment (e.g.
a coin flip): independence. But continuing to observe Xjs should result in a change of opinion about the
distribution of coin flip outcomes (e.g. gradually learning coin bias). So Bayesian statisticians should assume
exchangeability, a weaker condition than independence.
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2.8 de Finetti’s theorem

Theorem 2.1 de Finetti’s theorem. Let Yi ∈ Y for all i ∈ {1, 2, · · · }. Suppose that, for any n, our belief model
for Y1, . . . , Yn is exchangeable:

p(y1, . . . , yn) = p(yπ1
, . . . , yπn

)

for all partitions π of {1, · · · , n}. Then our model can be written as

p(y1, . . . , yn) =

∫ ( n∏
i=1

p(yi | θ)

)
p(θ) dθ.

for some parameter θ, some prior distribution on θ and some sampling model p(y | θ). The prior and sampling
model depends on the form of the belief model p(y1, · · · , yn).

So, in general,

Y1, . . . , Yn|θ are i.i.d.
θ ∼ p(θ)

}
⇔ Y1, . . . , Yn are exchangeable for all n.

Importantly, if we sample from a sufficiently large population, then we can model the sample variables as
being approximately conditionally i.i.d.
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3 One-parameter models

A one-parameter model is a class of sampling distributions that is indexed by a single unknown parameter.

Conjugate

Definition 3.1 A class P of prior distributions for θ is called conjugate for a sampling model p(y|θ) if

p(θ) ∈ P ⇒ p(θ|y) ∈ P .

Some distributions

(1) Beta distribution, θ ∼ beta(a, b)

p(θ) = dbeta(θ, a, b) =
Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1 for 0 ≤ θ ≤ 1.

E[θ] = a/(a+ b); Var[θ] = ab/[(a+ b+ 1)(a+ b)2] = E[θ]× E[1− θ]/(a+ b+ 1).

(2) Binomial distribution, Y ∈ {0, 1, . . . , n} ∼ binomial(n, θ) distribution if:

Pr(Y = y|θ) = dbinom(y, n, θ) =

(
n

y

)
θy(1− θ)n−y, y ∈ {0, 1, . . . , n}.

E[Y |θ] = nθ; Var[Y |θ] = nθ(1− θ).
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(3) Poisson distribution, a random variable Y has a Poisson distribution with mean θ

Pr(Y = y|θ) = dpois(y, θ) =
θye−θ

y!
for y ∈ {0, 1, 2, . . .}.

E[Y |θ] = θ; Var[Y |θ] = θ.

“mean-variance” relationship
(4) Gamma distribution, θ ∼ gamma(a, b)

p(θ) = dgamma(θ, a, b) =
ba

Γ(a)
θa−1e−bθ, for θ, a, b > 0.

E[θ] = a/b; Var[θ] = a/b2
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3.1 The Binomial model

Happiness data: n = 129, N : the total size of the female senior citizen population

Yi =

{
1 if Happy
0 if Unhappy

, θ =
N∑
i=1

Yi
N

(Likelihood function) The probability for any potential outcome y1, . . . , y129, conditional on θ:

p(y1, . . . , y129|θ) = θ
∑129

i=1 yi(1− θ)129−
∑129

i=1 yi.

(Prior distribution) Uniform prior distribution

p(θ) = 1 for all θ ∈ [0, 1].

(Posterior distribution)

p(θ|y1, . . . , y129) =
p(y1, . . . , y129|θ)p(θ)
p(y1, . . . , y129)

= p(y1, . . . , y129|θ)×
1

p(y1, . . . , y129)

∝ p(y1, . . . , y129|θ).

p(θ|y1, . . . , y129) = θ118(1− θ)11 × p(θ)/p(y1, . . . , y129) = θ118(1− θ)11 × 1/p(y1, . . . , y129).

1/p(y1, . . . , y129): the scale or normalizing constant
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∫ 1

0

θa−1(1− θ)b−1dθ =
Γ(a)Γ(b)

Γ(a+ b)
.

1 =

∫ 1

0

p(θ|y1, . . . , y129)dθ

1 =

∫ 1

0

θ118(1− θ)11/p(y1, . . . , y129)dθ

1 =
1

p(y1, . . . , y129)

∫ 1

0

θ118(1− θ)11dθ

1 =
1

p(y1, . . . , y129)

Γ(119)Γ(12)

Γ(131)
→ p(y1, . . . , y129) =

Γ(119)Γ(12)

Γ(131)

p(θ|y1, . . . , y129) =
Γ(131)

Γ(119)Γ(12)
θ118(1− θ)11 =

Γ(131)

Γ(119)Γ(12)
θ119−1(1− θ)12−1.
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3.1.1 Inference for exchangeable binary data

(1)Sufficient statistic

If Y1, . . . , Yn|θ are i.i.d. binary(θ):

p(θ|y1, . . . , yn) = θ
∑

yi(1− θ)n−
∑

yi × p(θ)/p(y1, . . . , yn).

Compare the relative probability of any two θ-values:

p(θa|y1, . . . , yn)
p(θb|y1, . . . , yn)

=
θ
∑

yi
a (1− θa)

n−
∑

yi × p(θa)/p(y1, . . . , yn)

θ
∑

yi
b (1− θb)n−

∑
yi × p(θb)/p(y1, . . . , yn)

=

(
θa
θb

)∑ yi (1− θa
1− θb

)n−
∑

yi p(θa)

p(θb)
.

The probability density at θa relative to that at θb depends on y1, . . . , yn only through
∑
yi.

⇒ contains all the information about θ available from the data
⇒
∑
yi, a sufficient statistic for θ and p(y1, . . . , yn|θ).
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(2)Posterior inference under a uniform prior distribution

prior: p(θ) = 1 or beta(1, 1)
likelihood: binomial(n, θ)
posterior: p(θ|y) = p(y|θ)p(θ)

p(y) =
(ny)θy(1−θ)n−yp(θ)

p(y) = c(y)θy(1− θ)n−yp(θ) = c(y)θy(1− θ)n−y

1 =

∫ 1

0

c(y)θy(1− θ)n−ydθ = c(y)
Γ(y + 1)Γ(n− y + 1)

Γ(n+ 2)

p(θ|y) = Γ(n+ 2)

Γ(y + 1)Γ(n− y + 1)
θy(1− θ)n−y =

Γ(n+ 2)

Γ(y + 1)Γ(n− y + 1)
θ(y+1)−1(1− θ)(n−y+1)−1

= beta(y + 1, n− y + 1).

(3)Posterior distributions under beta prior distributions

prior: θ ∼ beta(a, b)
likelihood: Y |θ ∼ binomial(n, θ)
posterior:

p(θ|y) = p(θ)p(y|θ)
p(y)

=
1

p(y)
× Γ(a+ b)

Γ(a)Γ(b)
θa−1(1− θ)b−1 ×

(
n

y

)
θy(1− θ)n−y

= c(n, y, a, b)× θa+y−1(1− θ)b+n−y−1

= dbeta(θ, a+ y, b+ n− y) ∼ beta(a+ y, b+ n− y).
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(4)Combining information

E[θ|y] = a+ y

a+ b+ n
,mode[θ|y] = a+ y − 1

a+ b+ n− 2
,Var[θ|y] = E[θ|y] E[1− θ|y]

a+ b+ n+ 1
.

E[θ|y] = a+ y

a+ b+ n
=

a+ b

a+ b+ n

a

a+ b
+

n

a+ b+ n

y

n

=
a+ b

a+ b+ n
× prior expectation +

n

a+ b+ n
× data average.

When n→ ∞ or n >> a+ b,:

a+ b

a+ b+ n
≈ 0,E[θ|y] ≈ y

n
,Var[θ|y] ≈ 1

n

y

n

(
1− y

n

)
.
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(5)Prediction

Ỹ ∈ {0, 1}: An additional outcome from the same population that has yet to be observed.

The predictive distribution of Ỹ is

Pr(Ỹ = 1|y1, . . . , yn) =
∫

Pr(Ỹ = 1, θ|y1, . . . , yn) dθ =
∫

Pr(Ỹ = 1|θ, y1, . . . , yn)p(θ|y1, . . . , yn)dθ

=

∫
θp(θ|y1, . . . , yn) dθ = E[θ|y1, . . . , yn] =

a+
∑n

i=1 yi
a+ b+ n

Pr(Ỹ = 0|y1, . . . , yn) = 1− E[θ|y1, . . . , yn] =
b+

∑n
i=1(1− yi)

a+ b+ n
.
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3.1.2 Confidence regions

1. Bayesian coverage (∼ credible intervals)

Definition 3.2 An interval [l(y), u(y)], based on the observed data Y = y, has 95% Bayesian coverage
for θ if

Pr(l(y) < θ < u(y)|Y = y) = 0.95

2. Frequentist coverage (∼ confidence intervals)

Definition 3.3 A random interval [l(Y ), u(Y )] has 95% frequentist coverage for θ if, before the data are
gathered,

Pr(l(Y ) < θ < u(Y )|θ) = 0.95

In a sense, the frequentist and Bayesian notions of coverage describe pre- and post-experimental coverage,
respectively.
Can a confidence interval have the same Bayesian and frequentist coverage probability?
An interval that has 95% Bayesian coverage additionally has the property that

Pr(l(Y ) < θ < u(Y )|θ) = .95 + ϵn

where |ϵn| < a/n for some constant a.
This means that a confidence interval procedure that gives 95% Bayesian coverage will have approximately
95% frequentist coverage as well, at least asymptotically
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3. Quantile-based interval
Goal: 100× (1− α)% quantile-based confidence interval (95%, α = 0.05 = 5%)
How to do: Find numbers θα/2 < θ1−α/2, the α/2 and 1− α/2 posterior quantiles of θ, such that

Pr(θ < θα|Y = y) = α/2; Pr(θ > θ1−α/2|Y = y) = α/2.

4. Highest posterior density (HPD) region
Definition 3.4 A 100× (1−α)% HPD region consists of a subset of the parameter space, s(y) ⊂ Θ such
that Pr(θ ∈ s(y)|Y = y) = 1− α; If θa ∈ s(y), and θb ̸∈ s(y), then p(θa|Y = y) > p(θb|Y = y).

All points in an HPD region have a higher posterior density than points outside the region. However, an
HPD region might not be an interval if the posterior density is multimodal (having multiple peaks).

Highest posterior density regions of varying probability content. The dashed line is the 95% quantile-based interval.
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3.2 The Poisson model

3.2.1 Posterior inference

(1)Sufficient statistic

Model Y1, . . . , Yn as i.i.d. Poisson with mean θ, then the joint pdf of sample data:

Pr(Y1 = y1, . . . , Yn = yn|θ) =
n∏

i=1

p(yi|θ) =
n∏

i=1

1

yi!
θyie−θ = c(y1, . . . , yn)θ

∑
yie−nθ.

Comparing two values of θ a posteriori:

p(θa|y1, . . . , yn)
p(θb|y1, . . . , yn)

=
c(y1, . . . , yn)

c(y1, . . . , yn)

e−nθa

e−nθb

θ
∑

yi
a

θ
∑

yi
b

p(θa)

p(θb)
=
e−nθa

e−nθb

θ
∑

yi
a

θ
∑

yi
b

p(θa)

p(θb)
.

As in the case of the i.i.d. binary model,
∑n

i=1 Yi contains all the information about θ that is available in
the data, and again we say that

∑n
i=1 Yi is a sufficient statistic. Furthermore, {

∑n
i=1 Yi} ∼ Poisson(nθ)

(2)Conjugate prior

Posterior distribution for θ: p(θ|y1, . . . , yn) ∝ p(θ)× p(y1, . . . , yn|θ) ∝ p(θ)× θ
∑

yie−nθ

terms like θc1e−c2θ ⇒ the family of gamma distributions
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(3)Posterior inference under a gamma prior distribution

Suppose Y1, . . . , Yn|θ ∼ i.i.d. Poisson(θ) and p(θ) = dgamma(θ, a, b):

p(θ|y1, . . . , yn) = p(θ)× p(y1, . . . , yn|θ)/p(y1, . . . , yn) = (θa−1e−bθ)× (θ
∑

yie−nθ)× c(y1, . . . , yn, a, b)

=
{
θa+

∑
yi−1e−(b+n)θ

}
× c(y1, . . . , yn, a, b).

This is evidently a gamma distribution.

(4)Combining information

Posterior expectation of θ: a convex combination of the prior expectation and the sample average:

E[θ|y1, . . . , yn] =
a+

∑
yi

b+ n
=

b

b+ n

a

b
+

n

b+ n

∑
yi
n

where b is the number of prior observations and a is the sum of counts from b prior observations.

n >> b⇒ E[θ|y1, . . . , yn] ≈ ȳ,Var[θ|y1, . . . , yn] ≈ ȳ/n.

(5)Prediction

p(θ) = dgamma(θ, a, b) =
ba

Γ(a)
θa−1e−bθ,⇒

∫ ∞

0

ba

Γ(a)
θa−1e−bθ dθ = 1 ⇒

∫ ∞

0

θa−1e−bθ dθ =
Γ(a)

ba
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Predictions about additional data can be obtained with the posterior predictive distribution:

p(ỹ|y1, . . . , yn) =
∫ ∞

0

p(ỹ|θ, y1, . . . , yn)p(θ|y1, . . . , yn)dθ =
∫
p(ỹ|θ)p(θ|y1, . . . , yn) dθ

=

∫
dpois(ỹ, θ)dgamma(θ, a+

∑
yi, b+ n)dθ

=

∫ {
1

ỹ!
θỹe−θ

}{
(b+ n)a+

∑
yi

Γ(a+
∑
yi)

θa+
∑

yi−1e−(b+n)θ

}
dθ

=
(b+ n)a+

∑
yi

Γ(ỹ + 1)Γ(a+
∑
yi)

∫ ∞

0

θa+
∑

yi+ỹ−1e−(b+n+1)θdθ.

p(ỹ|y1, . . . , yn) =
(

b+ n

b+ n+ 1

)a+
∑

yi ( 1

b+ n+ 1

)ỹ
Γ(a+

∑
yi + ỹ)

Γ(ỹ + 1)Γ(a+
∑
yi)

This is a negative binomial distribution with parameters (a+
∑
yi, b+ n), for which

E[Ỹ |y1, . . . , yn] =
a+

∑
yi

b+ n
= E[θ|y1, . . . , yn];

Var[Ỹ |y1, . . . , yn] =
a+

∑
yi

b+ n

b+ n+ 1

b+ n
= Var[θ|y1, . . . yn]× (b+ n+ 1) = E[θ|y1, . . . , yn]×

b+ n+ 1

b+ n
.
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3.3 Exponential families and conjugate priors

A one-parameter exponential family model is any model whose densities can be expressed as

p(y|ϕ) = h(y)c(ϕ)eϕt(y),

where ϕ is the unknown parameter and t(y) is the sufficient statistic.

Prior distribution: p(ϕ|n0, t0) = κ(n0, t0)c(ϕ)
n0en0t0ϕ

Likelihood: Information from Y1, . . . , Yn ∼ i.i.d. p(y|θ)
⇓ Posterior distribution

p(ϕ|y1, . . . , yn) ∝ p(ϕ)p(y1, . . . , yn|ϕ)

∝ c(ϕ)n0+n exp

{
ϕ×

[
n0t0 +

n∑
i=1

t(yi)

]}
∝ p(ϕ|n0 + n, n0t0 + nt̄(y)) = p(ϕ|n0 + n, n0t0 +

∑
t(yi))

n0 → “prior sample size” / a measure of how informative the prior is
As a function of ϕ, p(ϕ|n0, t0) has the same shape as a likelihood p(ỹ1, . . . , ỹn0

|ϕ) based on n0 “prior
observations” ỹ1, . . . , ỹn0

for which
∑
t(ỹi)/n0 = t0.. The prior distribution p(ϕ|n0, t0) contains the

same amount of information that would be obtained from n0 independent samples from the population.
t0 → “prior guess” of t(Y ) / the prior expected value of t(Y )

E[t(Y )] = E[E[t(Y )|ϕ]] = E[−c′(ϕ)/c(ϕ)] = t0
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3.3.1 Example: Binomial model

p(y|θ) = θy(1− θ)1−y =

(
θ

1− θ

)y

(1− θ) = eϕy(1 + eϕ)−1.

The conjugate prior for ϕ is thus given by p(ϕ|n0, t0) ∝ (1 + eϕ)−n0en0t0ϕ, which can be translated into
p(θ|n0, t0) ∝ θn0t0−1(1− θ)n0(1−t0)−1, a beta(n0t0, n0(1− t0)) distribution.

The posterior would be {θ|y1, . . . , yn} ∼ beta(t0 +
∑
yi, (1− t0) +

∑
(1− yi)).

3.3.2 Example: Poisson model

The Poisson(θ) model can be shown to be an exponential family model with

t(y) = y

ϕ = log θ

c(ϕ) = exp(e−ϕ)

The conjugate prior distribution forϕ is thus p(ϕ|n0, t0) = exp(n0e
−ϕ)en0t0y where t0 is the prior expectation

of the population mean of Y . This translates into a prior density for θ of the form p(θ|n0, t0) ∝ θn0t0−1e−n0θ,

which is a gamma(n0t0, n0) density. A weakly informative prior distribution can be obtained with t0 set to the
prior expectation of Y and n0 = 1, giving a gamma (t0, 1) prior distribution. The posterior distribution under
such a prior would be {θ|y1, . . . , yn} ∼ gamma (t0 +

∑
yi, 1 + n)
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3.4 Discussion and supplement

3.4.1 Discussion

Most authors refer to intervals of high posterior probability as “credible intervals” as opposed to confidence
intervals. Doing so fails to recognize that Bayesian intervals do have frequentist coverage probabilities, often
being very close to the specified Bayesian coverage level.

3.4.2 Supplement

if

{
θ ∼ beta(1, 1)(uniform)
Y ∼ binomial(n, θ)

}
, then {θ|Y = y} ∼ beta(1 + y, 1 + n− y)

if

{
θ ∼ beta(a, b)

Y ∼ binomial(n, θ)

}
, then {θ|Y = y} ∼ beta(a+ y, b+ n− y)

if

{
θ ∼ gamma(a, b)

Y1, . . . , Yn|θ ∼ Poisson(θ)

}
, then {θ|Y1, . . . , Yn} ∼ gamma(a+

n∑
i=1

Yi, b+ n)

39



4 Monte Carlo approximation

Law of Large Number
Central Limit Theorem
Under very general conditions, the sum (or mean) of a set of random variables is approximately normally
distributed.

More than one parameter

→ How to obtain exact values for these posterior quantities?

→ Generate random sample values of the parameters from their posterior distributions by using MC
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4.1 The Monte Carlo method

Monte Carlo approximation is based on random sampling and its implementation does not require a deep
knowledge of calculus or numerical analysis.

4.1.1 Process

θ: a parameter of interest; y1, . . . , yn: the numerical values of a sample from a distribution p(y1, . . . , yn|θ)
Sample some number S of independent, random θ-values from the posterior distribution p(θ|y1, . . . , yn):

θ(1), . . . , θ(S) ∼ i.i.d p(θ|y1, . . . , yn)

the empirical distribution of the Monte Carlo samples {θ(1), . . . , θ(S)} ≈ p(θ|y1, . . . , yn) especially with
increasing S
sample θ(1) ∼ p(θ|y1, . . . , yn),
sample θ(2) ∼ p(θ|y1, . . . , yn),

...
sample θ(S) ∼ p(θ|y1, . . . , yn),

 independently .
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4.1.2 According to the law of large numbers

If θ(1), . . . , θ(S) are i.i.d. samples from p(θ|y1, . . . , yn), then

1

S

S∑
s=1

g(θ(s)) → E[g(θ)|y1, . . . , yn] =
∫
g(θ)p(θ|y1, . . . , yn)dθ as S → ∞

where g(θ) can be any function. Thus,

θ̄ = 1
S

∑S
s=1 θ

(s) −→ E[θ|y1, . . . , yn]
1

S−1

∑S
s=1(θ

(s) − θ̄)2 → Var[θ|y1, . . . , yn]
# 1

S (θ
(s) ≤ c) → Pr(θ ≤ c|y1, . . . , yn)

the empirical distribution of {θ(1), . . . , θ(S)} → p(θ|y1, . . . , yn)
the median of {θ(1), . . . , θ(S)} → θ1/2
the α-percentile of {θ(1), . . . , θ(S)} → θα

4.1.3 Monte Carlo standard errors

(assess the accuracy of approximations to posterior means):

θ̄ = 1
S

∑S
s=1 θ

(s): the sample mean of the Monte Carlo samples,

Monte Carlo estimate of expectation E[θ|y1, . . . , yn]: θ̄ (approximately) the Central Limit Theorem
Monte Carlo estimate of Var[θ|y1, . . . , yn]: σ̂2 = 1

S−1

∑
(θ(s) − θ̄)2 the Central Limit Theorem

Monte Carlo standard error:
√
σ̂2/S
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choose S so that
√
σ̂2/S is less than the precision to which you want to report E[θ|y1, . . . , yn]

size S = 100, the estimate of Var[θ|y1, . . . yn] = 0.024, thus
√
0.024/100 = 0.015.

The difference between E[θ|y1, . . . , yn] and its Monte Carlo estimate to be less than 0.01 with a high
probability → 2

√
0.024/S < 0.01, i.e. S > 960.

An approximate 95% Monte Carlo confidence interval for the posterior mean of θ: θ̂ ± 2
√
σ̂2/S

4.2 Posterior inference for arbitrary functions

We may be interested in the posterior distribution of some computable function g(θ) of θ.

We have generated a sequence {θ(1), θ(2), . . .} from the posterior distribution of θ.

4.2.1 log odds function ∼ Binomial model

γ = log odds(θ) = log
θ

1− θ
.

The average value of γ = log θ
1−θ : converges to E[log θ

1−θ |y1, . . . , yn]
What about other aspects of posterior distribution of γ = log θ

1−θ?
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using a Monte Carlo approach:

sample θ(1) ∼ p(θ|y1, . . . , yn), compute γ(1) = g(θ(1))

sample θ(2) ∼ p(θ|y1, . . . , yn), compute γ(2) = g(θ(2))
...

sample θ(S) ∼ p(θ|y1, . . . , yn), compute γ(S) = g(θ(S))

 independently

Sequence {γ(1), . . . , γ(S)} constitutes S independent samples from p(θ|y1, . . . , yn), and so as S → ∞
γ̄ = 1

S

∑S
s=1 γ

(s) → E[γ|y1, . . . , yn]
1

S−1

∑S
s=1(γ

(s) − γ̄)2 → Var[γ|y1, . . . , yn]
the empirical distribution of {γ(1), . . . , γ(S)} → p(γ|y1, . . . , yn)

4.2.2 Functions of two parameters

sample θ(1)1 ∼ p(θ1|y1, . . . , yn), sample θ(1)2 ∼ p(θ2|y1, . . . , yn), compute g(θ(1)1 , θ
(1)
2 )

sample θ(2)1 ∼ p(θ1|y1, . . . , yn), sample θ(2)2 ∼ p(θ2|y1, . . . , yn), compute g(θ(2)1 , θ
(2)
2 )

... ... ...
sample θ(S)1 ∼ p(θ1|y1, . . . , yn), sample θ(S)2 ∼ p(θ2|y1, . . . , yn), compute g(θ(S)1 , θ

(S)
2 )

 independently .

Sequence {(θ(1)1 , θ
(1)
2 ), . . . , (θ

(S)
1 , θ

(S)
2 )} consists of S independent samples from the joint posterior distribution

of θ1 and θ2, and can be used to make MC approximations to posterior quantities of interest.
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For example, Pr(θ1 > θ2|
∑111

i=1 Yi,1 = 217,
∑44

i=1 Yi,2 = 66) is approximated by 1
S

∑S
s=1 1(θ

(s)
1 > θ

(s)
2 ),

where 1(x > y) is the indicator function which is 1 if x > y and zero otherwise.

4.3 Sampling from predictive distributions

The (posterior) predictive distribution of a random variable Ỹ is a probability distribution for Ỹ such that

known quantities have been conditioned on
unknown quantities have been integrated out

4.3.1 Sampling from prior predictive distribution

If true θ is known, the sampling model / likelihood function about Ỹ is:

Pr(Ỹ = ỹ|θ) = p(ỹ|θ)

But θ is unknown → We cannot make predictions → integrate out θ, thus, the predictive model is:

Pr(Ỹ = ỹ) =

∫
p(ỹ|θ)p(θ)dθ

A predictive distribution that integrates over unknown parameters but is not conditional on observed data is
called a prior predictive distribution.
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4.3.2 Sampling from posterior predictive distribution

After observing a sample Y1, . . . , Yn from the population, the relevant predictive distribution:

Pr(Ỹ = ỹ|Y1 = y1, . . . , Yn = yn) =

∫
p(ỹ|θ, y1, . . . , yn)p(θ|y1, . . . , yn)dθ =

∫
p(ỹ|θ)p(θ|y1, . . . , yn) dθ.

This is called a posterior predictive distribution, because it conditions on an observed dataset.

4.3.3 Sampling process

Sample from p(θ|y1, . . . , yn) ✓, sample from p(y|θ) ✓, but p(ỹ|y1, . . . , yn) is too complicated to sample
from directly.

⇓ Sample from the posterior predictive distribution indirectly using a Monte Carlo procedure, because:

p(ỹ|y1, . . . , yn) =
∫
p(ỹ|θ)p(θ|y1, . . . , yn)dθ,

thus p(ỹ|y1, . . . , yn) is the posterior expectation of p(ỹ|θ).

Obtain the posterior predictive probability that Ỹ is equal to some specific value ỹ:
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Sample θ(1), . . . , θ(S) ∼ i.i.d. p(θ|y1, . . . , yn), and approximate p(ỹ|y1, . . . , yn) with
∑S

s=1 p(ỹ|θ(s))/S, i.e.,

sample θ(1) ∼ p(θ|y1, . . . , yn), sample ỹ(1) ∼ p(ỹ|θ(1))
sample θ(2) ∼ p(θ|y1, . . . , yn), sample ỹ(2) ∼ p(ỹ|θ(2))

...
sample θ(S) ∼ p(θ|y1, . . . , yn), sample ỹ(S) ∼ p(ỹ|θ(S)).

The sequence {(θ, ỹ)(1), . . . , (θ, ỹ)(S)} constitutes S independent samples from the joint posterior distribu-
tion of (θ, Ỹ ), and the sequence {ỹ(1), . . . , ỹ(S)} constitutes S independent samples from the marginal posterior
distribution of Ỹ , which is the posterior predictive distribution.

Once we have generated these Monte Carlo samples from the posterior predictive distribution, we can use
them again to calculate other posterior quantities of interest.

4.3.4 Example

let Ỹ be the number of children of a person who is sampled from the population of women aged 40 with a
college degree. θ, the mean birthrate of this population.

Sampling model: Pr(Ỹ = ỹ|θ) = p(ỹ|θ) = θỹe−θ/ỹ!

Predictive model: Pr(Ỹ = ỹ) =
∫
p(ỹ|θ)p(θ)dθ

When θ ∼gamma(a, b), this prior predictive distribution is the negative binomial(a, b) distribution.

posterior predictive distribution: Pr(Ỹ = ỹ|Y1 = y1, . . . , Yn = yn) =
∫
p(ỹ|θ, y1, . . . , yn)p(θ|y1, . . . , yn)dθ =
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∫
p(ỹ|θ)p(θ|y1, . . . , yn) dθ, which is negative binomial(a+ Σyi, b+ n).

Posterior predictive samples from the conjugate Poisson model can be generated as follows:

sample θ(1) ∼ gamma(a+
∑
yi, b+ n), sample ỹ(1) ∼ Poisson(θ(1))

sample θ(2) ∼ gamma(a+
∑
yi, b+ n), sample ỹ(2) ∼ Poisson(θ(2))

...
sample θ(S) ∼ gamma(a+

∑
yi, b+ n), sample ỹ(S) ∼ Poisson(θ(S)).
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4.4 Posterior predictive model checking

The sample of 40-year-old women without a college degree, n = 111

1. Two conflict distributions:
Empirical distribution: the number of women with exactly 2 children is 38, which is twice the number
of women in the sample with 1 child
Posterior predictive distribution: the probability of sampling a woman with 2 children is slightly less
probable than sampling a woman with 1

2. Explanations:
It is a result of sampling variability: The empirical distribution of sampled data does not generally
match exactly the distribution of the population from which the data were sampled, and in fact may
look quite different if the sample size is small.
In such cases, having a predictive distribution that smoothes over the bumps of the empirical distribution
may be desirable.
Sample data are correct. In contrast, the Poisson model is unable to represent this feature of the
population because there is no Poisson distribution that has such a sharp peak at y = 2.

3. These explanations for the discrepancy between the empirical and predictive distributions can be assessed
numerically with Monte Carlo simulation.
(1) For every vector y of length n = 111, let t(y) be the ratio of the number of 2’s in y to the number of

1’s, so for our observed data yobs, t(yobs) = 2.
(2) Suppose we were to sample a different set of 111 women, obtaining a data vector Ỹ of length 111

recording their number of children. We obtain Monte Carlo samples by:
For each s ∈ {1, . . . , S},
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sample θ(s) ∼ p(θ|Y = yobs)

sample Ỹ (s) = (ỹ
(s)
1 , . . . , ỹ

(s)
n ) ∼ i.i.d. p(y|θ(s))

compute t(s) = t(Ỹ (s))

In this Monte Carlo sampling scheme,
{θ(1), . . . , θ(S)} are samples from the posterior distribution of θ
{Ỹ (1), . . . , Ỹ (S)} are posterior predictive datasets, each of size n
{t(1), . . . , t(S)} are samples from the posterior predictive distribution of t(Ỹ )

4. Result: Out of 10,000 Monte Carlo datasets, only about a half of a percent had values of t(y) that equaled
or exceeded t(yobs)

Poisson model is flawed: We would hardly ever see a dataset that resembled our observed one in terms of
t(y).

5. Model choice:
In terms of data description, we should at least make sure that our model generates predictive datasets
Ỹ that resemble the observed dataset in terms of features that are of interest.
However, an incorrect model can still provide correct inference for some aspects of the true population,
such as the sample mean and variance

4.5 Discussion

A common practice: using the posterior predictive distribution to assess model fit (Guttman (1967) and
Rubin (1984)) → posterior predictive p-values (differ from p-values based on classical goodness-of-fit tests)
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5 The normal model

Discuss some of the properties of the normal distribution
Show how to make posterior inference on the population mean and variance parameters
Compare the sampling properties of the standard Bayesian estimator of the population mean to those of
the unbiased sample mean
Discuss the appropriateness of the normal model when the underlying data are not normally distributed.

The importance of the normal distribution stems primarily from the central limit theorem, which says that
under very general conditions, the sum (or mean) of a set of random variables is approximately normally
distributed. In practice, this means that the normal sampling model will be appropriate for data that result
from the additive effects of a large number of factors.

5.1 The normal model

A random variable Y is said to be normally distributed with mean θ and variance σ2 > 0 if the density of
Y is given by:

p(y|θ, σ2) = 1√
2πσ2

exp

[
−1

2
(
y − θ

σ
)2
]
, −∞ < y <∞.

The dnorm, rnorm, pnorm, and qnorm commands in R take the standard deviation σ as their argument, not
the variance σ2.
If X ∼ normal(µ, τ 2), Y ∼ normal(θ, σ2) and X and Y are independent, then aX + bY ∼ normal(aµ+

bθ, a2τ 2 + b2σ2)

51



5.2 Inference for the mean, conditional on the variance

Model: {Y1, . . . , Yn|θ, σ2} ∼ i.i.d. normal (θ, σ2)

Joint sampling density:

p(y1, . . . , yn|θ, σ2) =
n∏

i=1

p(yi|θ, σ2) =
n∏

i=1

1√
2πσ2

e−
1
2(

yi−θ

σ )
2

= (2πσ2)−n/2 exp

{
−1

2

∑(
yi − θ

σ

)2
}
.

Expanding the quadratic term in the exponent, p(y1, . . . , yn|θ, σ2) depends on y1, . . . , yn through

n∑
i=1

(
yi − θ

σ

)2

=
1

σ2

∑
y2i − 2

θ

σ2

∑
yi + n

θ2

σ2

Two-dimensional sufficient statistic: {
∑
y2i ,
∑
yi}; ȳ =

∑
yi/n, s

2 =
∑

(yi − ȳ)2/(n− 1), thus {ȳ, s2}.

Problem: Inference for this two-parameter model breakdown−−−−−−→ Two one-parameter problems

Begin with making inference for θ when σ2 is known, and use a conjugate prior distribution for θ.

For any (conditional) prior distribution p(θ|σ2), the posterior distribution will satisfy:

p(θ|y1, . . . , yn, σ2) = p(θ|σ2)p(y1, . . . , yn|θ, σ2)/p(y1, . . . , yn|σ2) ∝ p(θ|σ2)p(y1, . . . , yn|θ, σ2)
∝ p(θ|σ2)× e−

1
2σ2

∑
(yi−θ)2 ∝ p(θ|σ2)× ec1(θ−c2)

2

.

If p(θ|σ2) conjugate → must include quadratic terms like ec1(θ−c2)
2 → The simplest such class of probability
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densities: the normal family of densities ⇓

If p(θ|σ2) is normal and y1, . . . , yn are i.i.d. normal(θ, σ2), then p(θ|y1, . . . , yn, σ2) is also a normal density.

Calculation Process If θ ∼ normal(µ0, τ 20 ), then

p(θ|y1, . . . , yn, σ2) = p(θ|σ2)p(y1, . . . , yn|θ, σ2)/p(y1, . . . , yn|σ2) ∝ p(θ|σ2)p(y1, . . . , yn|θ, σ2)

∝ exp{− 1

2τ 20
(θ − µ0)

2} exp{− 1

2σ2

∑
(yi − θ)2}.

Adding the terms in the exponents and ignoring the -1/2 for the moment:

1

τ 20
(θ2 − 2θµ0 + µ20) +

1

σ2
(
∑

y2i − 2θ
∑

yi + nθ2) = aθ2 − 2bθ + c, where

a =
1

τ 20
+
n

σ2
, b =

µ0
τ 20

+

∑
yi

σ2
, and c = c(µ0, τ

2
0 , σ

2, y1, . . . , yn).

p(θ|σ2, y1, . . . , yn) ∝ exp{−1

2
(aθ2 − 2bθ)} = exp{−1

2
a(θ2 − 2bθ/a+ b2/a2) +

1

2
b2/a}

∝ exp{−1

2
a(θ − b/a)2} = exp

{
−1

2

(
θ − b/a

1/
√
a

)2
}
.

the standard deviation: 1/
√
a; the role of the mean: b/a. Thus, p(θ|σ2, y1, . . . , yn) is indeed a normal density,

with mean µn and variance τ 2n , where

µn =
b

a
= (

1

τ 20
µ0 +

n

σ2
ȳ)/(

1

τ 20
+
n

σ2
) and τ 2n =

1

a
= 1/(

1

τ 20
+
n

σ2
).
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5.2.1 Combining information

The (conditional) posterior parameters τ 2n and µn combine the prior parameters τ 20 and µ0 from the data.

Posterior variance and precision:
1

τ 2n
=

1

τ 20
+
n

σ2
,

Inverse variance is often referred to as the precision. For the normal model, let: σ̃2 = 1/σ2= sampling
precision, i.e. how close the yi’s are to θ; τ̃ 20 = 1/τ 20= prior precision; τ̃ 2n = 1/τ 2n= posterior precision.
Thus,

τ̃ 2n = τ̃ 20 + nσ̃2,

so posterior information = prior infor. + data infor., a larger sample size n increases this precision.
Posterior mean

µn =

1
τ20

1
τ20
+ n

σ2

µ0 +
n
σ2

1
τ20
+ n

σ2

ȳ =
τ̃ 20

τ̃ 20 + nσ̃2
µ0 +

nσ̃2

τ̃ 20 + nσ̃2
ȳ

the posterior mean is a weighted average of the prior mean µ0 and the sample mean ȳ. (weight on the prior
mean = 1/τ 20 = prior precision; weight on the sample mean = n/σ2 = sampling precision)
If the prior mean were based on κ0 prior observations from the same (or similar) population as Y1, . . . , Yn,
then we might want to set τ 20 = σ2/κ0, the variance of the mean of the prior observations. Thus:

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ =

κ0
κn
µ0 +

n

κn
ȳ. (Letκn = κ0 + n),

a weighted average of µ0 and ȳ given the number of prior “observations” κ0 and the sample size n.
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5.2.2 Prediction

Goal: Predict a new observation Ỹ from the population after having observed (Y1 = y1, . . . , Yn = yn).
(find the predictive distribution)

A fact: saying that Ỹ is normal with mean θ is the same as saying Ỹ is equal to θ plus some mean-zero
normally distributed noise, that is:

{Ỹ |θ, σ2} ∼ normal(θ, σ2) ⇔ Ỹ = θ + ϵ̃, {ϵ̃|θ, σ2} ∼ normal(0, σ2).

First compute

E[Ỹ |y1, . . . , yn, σ2] = E[θ + ϵ̃|y1, . . . , yn, σ2] = E[θ|y1, . . . , yn, σ2] + E[ϵ̃|y1, . . . , yn, σ2] = µn + 0 = µn

Var[Ỹ |y1, . . . , yn, σ2] = Var[θ + ϵ̃|y1, . . . , yn, σ2] = Var[θ|y1, . . . , yn, σ2] + Var[ϵ̃|y1, . . . , yn, σ2] = τ 2n + σ2.

The predictive distribution is therefore Ỹ |σ2, y1, . . . , yn ∼ normal(µn, τ 2n + σ2).

uncertainty about the center of the population τ 2n
As n→ ∞, more and more certain about where θ is, and the posterior variance τ 2n of θ goes to zero.
how variable the population σ2

But certainty about θ does not reduce the sampling variability σ2
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5.3 Joint inference for the mean and variance

For any joint prior distribution p(θ, σ2) for θ and σ2, posterior inference proceeds using Bayes’ rule:

p(θ, σ2|y1, . . . , yn) = p(y1, . . . , yn|θ, σ2)p(θ, σ2)/p(y1, . . . , yn).

First, develop a simple conjugate class of prior distributions which makes posterior calculations easy.

θ’s prior distribution:
Recall1: a joint distribution for two quantities can be expressed as the product of a conditional
probability and a marginal probability: p(θ, σ2) = p(θ|σ2)p(σ2)
Recall2: if σ2 were known, then a conjugate prior distribution for θ was normal(µ0, τ 20 ).

particular case: τ 20 = σ2/κ0:

p(θ, σ2) = p(θ|σ2)p(σ2) = dnorm(θ, µ0, τ0 = σ/
√
κ0)× p(σ2).

µ0 and κ0 can be interpreted as the mean and sample size from a set of prior observations
σ2’s prior distribution: the gamma family is a conjugate class of densities for 1/σ2 (precision). → σ2 has
an inverse-gamma distribution: precision = 1/σ2 ∼ gamma(a, b), σ2 ∼ inverse-gamma(a, b). Rewrite as:

1/σ2 ∼ gamma (
ν0
2
,
ν0
2
σ20).

E[σ2] = σ20
ν0/2

ν0/2−1 ; mode[σ2] = σ20
ν0/2

ν0/2+1 , so mode[σ2] < σ20 < E[σ2]; Var[σ2] is decreasing in ν0.
the prior parameters (σ20, v0) as the sample variance and sample size of prior observations.
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5.3.1 Posterior inference

Thus, our prior distributions and likelihood functions (sampling model) are as follows:

1/σ2 ∼ gamma(ν0/2, ν0σ
2
0/2)

θ|σ2 ∼ normal(µ0, σ
2/κ0)

Y1, . . . , Yn|θ, σ2 ∼ i.i.d. normal (θ, σ2).

Just as the prior distribution for θ and σ2 can be decomposed as p(θ, σ2) = p(θ|σ2)p(σ2), the posterior
distribution can be similarly decomposed:

p(θ, σ2|y1, . . . , yn) = p(θ|σ2, y1, . . . , yn)p(σ2|y1, . . . , yn).

p(θ|σ2, y1, . . . , yn): can be obtained using the previous result: Plugging in σ2/κ0 for τ 20 , thus

{θ|y1, . . . , yn, σ2} ∼ normal(µn, σ
2/κn), where

κn = κ0 + n and µn =
(κ0/σ

2)µ0 + (n/σ2)ȳ

κ0/σ2 + n/σ2
=
κ0µ0 + nȳ

κn
, τ 2n =

1
1
τ20
+ n

σ2

=
1

κ0

σ2 +
n
σ2

=
σ2

κ0 + n
.

Therefore, if µ0 is the mean of κ0 prior observations, then E[θ|y1, . . . , yn, σ2] is the sample mean of the
current and prior observations, and V ar[θ|y1, . . . , yn, σ2] is σ2 divided by the total number of observations,
both prior and current.
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p(σ2|y1, . . . , yn): can be obtained by performing an integration over the unknown value of θ:

p(σ2|y1, . . . , yn) ∝ p(σ2)p(y1, . . . , yn|σ2)

= p(σ2)

∫
p(y1, . . . , yn|θ, σ2)p(θ|σ2) dθ.

The result is:
{σ2|y1, . . . , yn} ∼ inverse− gamma(νn/2, νnσ

2
n/2),

{1/σ2|y1, . . . , yn} ∼ gamma(νn/2, νnσ
2
n/2)

where
νn = ν0 + n, Like κn

σ2n =
1

νn
[ν0σ

2
0 + (n− 1)s2 +

κ0n

κn
(ȳ − µ0)

2].

νn is fairly intuitive, it acts as a sample size which is the ”prior sample size” of the variance plus the sample
size n. σ2n is a bit harder to understand. There are three terms here.
1. ν0σ20, can be thought of as a prior sum of squared observations from the sample mean (ν0 prior samples

with variance σ20).
2. Similarly, (n − 1)s2, where s2 =

∑n
i=1(yi − ȳ)2/(n − 1), is literally the sum of squared (actually

observed) observations from the sample mean.
3. Lastly, the third term increases the posterior variance if the observed sample mean (ȳ) is far away from

the expected prior mean µ0, since this would suggest higher variance.
4. All three ”sum of squares-ish” terms are combined, then divided by the total number of ”observations”
νn = n+ ν0, as commonly done to estimate variance from a sample.
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5.3.2 Summary of posterior inference

1. In sum, for inference with the normal model, there are four prior parameters to specify:
- σ20, an initial estimate for the variance;
- ν0, a “prior sample size” from which the initial estimate of the variance is observed;
- µ0, an initial estimate for the population mean;
- κ0, a “prior sample size” from which the initial estimate of the mean is observed

2. Then we have
- 1/σ2 ∼ Gamma(ν0/2, σ20ν0/2)
- =⇒ E(σ2) = σ20

ν0/2
ν0/2−1 (use expectation of inverse gamma)

- θ | σ2 ∼ N (µ0, σ
2/κ0)

- =⇒ E(θ) = µ0
3. Now we have a new sample with n observations. Thus, the updated parameters are

- νn = ν0 + n

- σ2n = 1
νn

[
ν0σ

2
0 + (n− 1)s2 + κ0n

κn
(ȳ − µ0)

2
]

- µn = κ0µ0+nȳ
κn

- κn = κ0 + n

4. So that the posterior is finally
- 1/σ2 | y1, . . . , yn ∼ Gamma(νn/2, σ2nνn/2)
- Where E(σ2 | y1, . . . , yn) = σ2

nνn
2(νn/2−1) (using the expectation of the inverse gamma)

- θ | σ2, y1, . . . , yn ∼ N (µn, σ
2/κn)

- Where E(θ | y1, . . . , yn, σ2) = µn = κ0µ0+nȳ
κn

Note how the prior sample sizes for the variance and the mean are decoupled because they update differently.
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However, it’s common to set ν0 = κ0.
5. The final posterior distribution can be obtained by:

p(θ, σ2|y1, . . . , yn) = p(θ|σ2, y1, . . . , yn)p(σ2|y1, . . . , yn).

5.3.3 Monte Carlo sampling

All we know (so far) is that (1) the conditional distribution of θ given the data and σ2 is normal, and that
(2) σ2 given the data is inverse-gamma.

If we could generate marginal samples of θ, from p(θ|y1, . . . , yn), then we could use the Monte Carlo
method to approximate the above quantities of interest. → This is quite easy to do by generating samples of θ
and σ2 from their joint posterior distribution. → Using the following Monte Carlo procedure:

σ2(1) ∼ inverse gamma(νn/2, σ2nνn/2), θ(1) ∼ normal(µn, σ2(1)/κn)
... ...

σ2(S) ∼ inverse gamma(νn/2, σ2nνn/2), θ(S) ∼ normal(µn, σ2(S)/κn).

{θ(n), σ2(n)} represent samples from the joint distribution p(θ, σ2 | y1, . . . , yn), and either set of values by
themselves represents samples from the full marginal distribution. →{θ(1), . . . , θ(n)} can be seen as independent
samples from the marginal posterior distribution of p(θ|y1, . . . , yn)

This is intuitive for σ2(n) but less so for θ(n). The key is to notice that, although θ(n) is sampled conditioned
on σ2(n), multiple θ(n) samples are conditioned on multiple different σ2(n)s. Taken together, they constitute
marginal samples of θ, and the θ(n) do indeed represent samples from the marginal distribution.
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5.3.4 Improper priors

What if we want to use no prior information? See what happens to our posterior distribution κ0, ν0 → 0.

σ2n =
1

ν0 + n
[ν0σ

2
0 + (n− 1)s2 +

κ0n

κ0 + n
(ȳ − µ0)

2] → n− 1

n
s2 =

1

n

∑
(yi − ȳ)2

µn =
κ0µ0 + nȳ

κ0 + n
→ ȳ

.

Then, the “posterior” distribution (plugging in κ0 = ν0 = 0 and the posterior parameters σ2n, µn and
simplifying) would be

{1/σ2|y1, . . . , yn} ∼ Gamma(
n

2
,
1

n

n

2

∑
(yi − y)2)

{θ|σ2, y1, . . . , yn} ∼ N (ȳ,
σ2

n
)

With “significant algebra”, you can show that inference this way results in

θ − ȳ

s/
√
n
|y1, . . . , yn ∼ tn−1.

i.e. a t distribution with n− 1 degrees of freedom. This is similar to the sampling distribution of t statistic:

Ȳ − θ

s/
√
n
|θ ∼ tn−1.
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But like the Bayesian vs Frequentist confidence intervals, they are philosophically different.

(1) describes uncertainty about the true mean conditional on the data (after you sample your data, your
uncertainty is still represented with a tn−1 distribution)

(2) describes uncertainty about the observed sample mean given the true population mean (before you sample
the data, your uncertainty about the scaled deviation of the sample mean Ỹ from the population mean θ is
represented with a tn−1 distribution)

The difference is that before you sample your data, both Ỹ and θ are unknown. After sampling, Ỹ = ȳ is
known, which provides us with information about θ. The improper prior on (θ, σ2) lead to the above tn−1

posterior distribution for θ, and so inference based on this posterior distribution is not formally Bayesian.

5.4 Bias, variance and mean squared error

Now we are diving into the properties of estimators for posterior parameters.

A point estimator of an unknown parameter θ is a function that converts your data into a single element of
the parameter space Θ. Good point estimators should hopefully approximate (and reliably approximate) the
true value of θ; we can formalize these properties as the bias and mean squared error of estimators.

In Bayesian analysis, point estimators are usually functions of the posterior distribution of the parameter,
such as the expectation. Suppose the true value of θ is θ0.The Bias of an estimator θ̂ is

Bias(θ̂) = E(θ̂)− θ0.

If Bias(θ̂) = 0 we say that θ̂ is an unbiased estimator; otherwise we say it is biased.
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The point estimator for the posterior of our normal sampling model and a normal prior is (call it θ̂b)

θ̂b(y1, . . . , yn) = E[θ|y1, . . . , yn] =
n

κ0 + n
ȳ +

κ0
κ0 + n

µ0 = wȳ + (1− w)µ0.

Consider the Bayesian θ̂b above V.S. the standard maximum likelihood estimator, θ̂e(y1, . . . , yn) = ȳ.

Bias(θ̂e) = E[θ̂e|θ = θ0]− θ0 = E(θ̂e)− θ0 = 0, so θ̂b is unbiased;
Bias(θ̂b) = E[θ̂b|θ = θ0]− θ0 = E(θ̂b)− θ0 = wθ0 + (1− w)µ0 − θ.
Notice that the first two terms add up to θ only if µ0 = θ. For all µ ̸= θ0, θ̂b is biased!

A biased estimator seems undesirable, but can actually be useful in this setting. Imagine “biasing” the
estimator towards the true mean to obtain a more accurate estimate. Thus it is useful to recall using the Mean
Squared Error as another measure of estimator performance, which measures how close an estimator θ̂ will be
to the true population parameter θ, on average:

The Mean Squared Error (MSE) of an estimator θ̂ is

MSE(θ̂) = Var(θ̂) + Bias2(θ̂)or = Var[θ̂|θ0] + Bias2[θ̂|θ0].

This formulation is obtained by: Letting m = E[θ̂|θ0], the MSE is

MSE[θ̂|θ0] = E[(θ̂ − θ0)
2|θ0] = E[(θ̂ −m+m− θ0)

2|θ0]
= E[(θ̂ −m)2|θ0] + 2E[(θ̂ −m)(m− θ0)|θ0] + E[(m− θ0)

2|θ0].
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Since m = E[θ̂|θ0] it follows that E[θ̂ −m|θ0] = 0 and so the second term is zero, the formulation ✓.

Var[θ̂e|θ = θ0, σ
2] = Var(ȳ) =

σ2

n
,

Var[θ̂b|θ = θ0, σ
2] = Var(wθ0 + (1− w)µ0) = Var(wθ0) = w2 × σ2

n
<
σ2

n

Thus,

MSE[θ̂e|θ0] = E[(θ̂e − θ0)
2|θ0] = Var[θ̂e|θ = θ0, σ

2] + 0 =
σ2

n

MSE[θ̂b|θ0] = E[(θ̂b − θ0)
2|θ0] == E[{w(ȳ − θ0) + (1− w)(µ0 − θ0)}2|θ0]

= Var(θ̂b) + Bias2(θ̂b)

= w2σ
2

n
+ [wθ + (1− w)µ0 − θ]2 = w2σ

2

n
+ [(1− w)µ0 − (1− w)θ]2

= w2σ
2

n
+ (1− w)2(µ0 − θ)2
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Notice that

MSE(θ̂b) < MSE(θ̂e) if

=⇒ w2σ
2

n
+ (1− w)2(µ0 − θ)2 <

σ2

n
=⇒ (1− w)2(µ0 − θ)2 < (1− w2)

σ2

n

=⇒ (µ0 − θ)2 <
σ2

n

1− w2

(1− w)2
=⇒ (µ0 − θ)2 <

σ2

n

(1− w)(1 + w)

(1− w)2

=⇒ (µ0 − θ)2 <
σ2

n

1 + w

1− w
=⇒ (µ0 − θ)2 <

σ2

n

1 + n
κ0+n

1− n
κ0+n

=⇒ (µ0 − θ)2 <
σ2

n

κ0+2n
κ0+n
κ0

κ0+n

=⇒ (µ0 − θ)2 <
σ2

n

κ0 + 2n

κ0 + n

κ0 + n

κ0

=⇒ (µ0 − θ)2 <
σ2

n

κ0 + 2n

κ0
=⇒ (µ0 − θ)2 < σ2

κ0 + 2n

nκ0

=⇒ (µ0 − θ)2 < σ2
(
κ0
nκ0

+
2n

nκ0

)
=⇒ (µ0 − θ)2 < σ2

(
1

n
+

2

κ0

)

(µ0 − θ0)
2 <

σ2

n

1 + w

1− w
= σ2

(
1

n
+

2

κ0

)
.

So the Bayesian estimator has lower mean squared error than the ML estimate as long as values of µ0 and κ0
are picked such that this inequality holds-intuitively, if your “guess” about the prior is not far from the truth.
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5.5 Prior specification based on expectations

A p-dimensional exponential family model is a model whose densities can be written as p(y|ϕ) =

h(y)c(ϕ) exp{ϕT t(y)}, where ϕ is the parameter to be estimated and t(y) = {t1(y), . . . , tp(y)} is the sufficient
statistic.

The normal model is a two-dimensional exponential family model. The normal density:

p(y | θ, σ2) = 1√
2πσ2

exp
(
−y

2 − 2θy + θ2

2σ2

)
The exponential family parameters:

t(y) = (y, y2),

ϕ = (θ/σ2,−(2σ2)−1)

c(ϕ) = |ϕ2|1/2 exp{ϕ21/(2ϕ2)}.
h(y) = 1/

√
π

Reconstruct the normal density:

p(y | ϕ) = 1√
π
|ϕ2|1/2exp

(
ϕ21
2ϕ2

)
exp

((
y y2

)( θ/σ2

−(2σ2)−1

))

=
1√
π
(2σ2)−1/2exp

(
(θ/σ2)2

−2(2σ2)−1

)
exp

((
y y2

)( θ/σ2

−(2σ2)−1

))
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I am not going to do the exact algebra here, but notice that once you combine the exponential terms (and
the matrix multiplication in the second exp), there are three separate terms added together. With a common
factor of 1/− 2σ2, those three terms are the y2, 2θy, and θ2 of the expanded normal density above.

With exponential family models, we can now “read off” conjugate priors; for the p-dimensional case,
the prior is p(ϕ | n0, t0) ∝ c(ϕ)n0exp(n0tT0ϕ). Using the change of variables formula (which seems very
complicated), you can reparamaterize the corresponding prior in terms of θ and σ2, which gives a prior that
is the product of two priors we had determined previously to be conjugate: the normal and inverse-gamma
densities.

There are some more details on the significance of specifying n0 and t0 that I am skipping since it essentially
mirrors the prior specification advice in the previous sections.

5.6 The normal model for non-normal data

Because of the central limit theorem (while the sampling distribution of a single data point is not normal,
the sampling distribution of the sample mean is close to normal) etc., we often use the normal model for
non-normal data. This is especially applicable when

1) We are measuring summary statistics of a population, such as the mean
2) When we are measuring variables that might be the additive result of many underlying factors, which

results in an approximately normal variable
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The central limit theorem tells us that

p(ȳ|θ, σ2) ≈ dnorm(ȳ, θ,
√
σ2/n),

with the approximation becoming increasingly good as n gets larger.

If the population variance σ2 were known, then an approximate posterior distribution of the population
mean θ, conditional on the sample mean ȳ, could be obtained as

p(θ|ȳ, σ2) ∝ p(θ)× p(ȳ|θ, σ2) ≈ p(θ)× dnorm(ȳ, θ,
√
σ2/n).

Of course, σ2 is generally not known, but it is estimated by s2. The approximate posterior distribution of
(θ, σ2) conditional on the estimates (ȳ, s2) is given by

p(θ, σ2|ȳ, s2) ∝ p(θ, σ2)× p(ȳ, s2|θ, σ2)
= p(θ, σ2)× p(ȳ|θ, σ2)× p(s2|ȳ, θ, σ2)
≈ p(θ, σ2)× dnorm(ȳ, θ,

√
σ2/n)× p(s2|ȳ, θ, σ2).

(5.1)

Again, for large n, the approximation of p(ȳ|θ, σ2) by the normal density is generally a good one even if the
population is not normally distributed. However, it is not clear what to put for p(s2|ȳ, θ, σ2).

If we knew that the data were actually sampled from a normal distribution, then results from statistical
theory would say that

p(s2|ȳ, θ, σ2) = dgamma(s2,
n− 1

2
,
n− 1

2σ2
).
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However, if the data are not normally distributed, then s2 is not necessarily gamma-distributed or independent
of ȳ. The use of the posterior distribution in Eq.(5.1) for non-normal data could give misleading results about
the joint distribution of {θ, σ2}.

However, the marginal posterior distribution of θ based on Eq.(5.1) can be remarkably accurate, even for
non-normal data. The reasoning is as follows: The central limit theorem says that for large n

√
n
Ȳ − θ

σ
∼̇ normal(0, 1),

where ∼̇ means “approximately distributed as.” Additionally, if n is sufficiently large, then s2 ≈ σ2 and so

√
n
Ȳ − θ

s
∼̇ normal(0, 1).

This should seem familiar: Recall from introductory statistics that for normal data,
√
n Ȳ−θ

s has a t-
distribution with n− 1 degrees of freedom. For large n, s2 is very close to σ2 and the tn−1 distribution is very
close to a normal(0, 1) distribution.

Even though the posterior distribution based on a normal model may provide good inference for the
population mean, the normal model can provide misleading results for other sample quantities.
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5.7 Discussion and further references

Justify the normal sampling model:

Among all distributions with a given mean θ and variance σ2, the normal(θ, σ2) distribution is the most
diffuse in terms of a measure known as entropy
data analysis perspective

The sample mean will generally be approximately normally distributed due to the central limit theorem.
Thus the normal model provides a reasonable sampling model for the sample mean, if not the sample
data
The normal model is a simple exponential family model with sufficient statistics equivalent to the
sample mean and variance. As a result, it will provide a consistent estimation of the population mean
and variance even if the underlying population is not normal
Confidence intervals for the population mean based on the normal model will generally be asymptoti-
cally correct
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6 Posterior approximation with the Gibbs sampler

It is easy to sample from the full conditional distribution of each parameter instead of the joint posterior
distribution. Thus, posterior approximation can be made with the Gibbs sampler, an iterative algorithm that
constructs a dependent sequence of parameter values whose distribution converges to the target joint posterior
distribution.

6.1 A semiconjugate prior distribution

In Chapter 5, we performed two-parameter inference by decomposing the prior p(θ, σ2) = p(θ | σ2)p(σ2).
So our prior distribution on θ depending on σ2:

θ | σ2 ∼ N (µ0, σ
2/κ0)

Sometimes we may want to specify our uncertainty about θ as being independent of σ2, so that p(θ, σ2) =
p(θ)p(σ2). One such joint distribution is the following “semiconjugate” prior distribution:

θ ∼ N (µ0, τ
2
0 )

1/σ2 ∼ Gamma(v0/2, v0σ20/2)

If τ 20 is not proportional to σ2, the marginal density of 1/σ2 is not a gamma distribution or any other standard
distribution from which we can easily sample.
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Why posterior densities are hard to calculate for nonconjugate priors using the Bayes rule?

p(θ | y) = p(y | θ)p(θ)∫
p(y | θ′)p(θ′) dθ′

The numerator here is often easy to calculate, but the denominator is often prohibitively hard to compute.
When the numerator is not known to be proportional to a known probability distribution, we can’t get the full
joint density without the denominator.

However, consider that we may want to decouple the priors of the two parameters. This allows flexibility
with the specification of the prior (initial estimate and confidence) of either parameter.

Consider the midge wing example: we picked a prior on θ that was centered around 1.9 (our prior
expectation) but with most of its mass above 0, since wing lengths cannot be above 0. We can’t freely do this
from what we know in section 5 (i.e. setting τ 20 = σ2/κ0). Alternatively, we can set τ 20 to be whatever we want,
but then there is no longer a known form of the joint posterior

p(θ, σ2 | y1, . . . , yn) ∝ p(θ, σ2)× p(y1, . . . , yn | θ, σ2)

that can easily be sampled from. However, as it turns out, the full conditionals p(θ | σ2, y1, . . . , yn) and
p(σ2 | θ, y1, . . . , yn) are easy to specify, as when evaluating the formulas, we can simply disregard the other
fixed parameter as a constant, leading to known posterior distributions. A technique called Gibbs sampling
allows us to take advantage of this by constructing a sampler that approximates the (unknown) joint distribution
by sampling iteratively from the (known) full conditional distributions.
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6.2 Discrete approximations

(Some basic setting / information):

The precision: σ̃2 = 1/σ2. The joint distribution (built out of standard prior and sampling distributions):

p(θ, σ̃2, y1, . . . , yn) = p(θ, σ̃2)× p(y1, . . . , yn|θ, σ̃2)

= dnorm(θ, µ0, τ0)× dgamma(σ̃2, ν0/2, ν0σ
2
0/2)×

n∏
i=1

dnorm(yi, θ, 1/
√
σ̃2).

(6.1)

A discrete approximation to the posterior distribution: constructing a posterior distribution over a grid of
parameter values, based on relative posterior probabilities. This is done by evaluating p(θ, σ̃2, y1, . . . , yn) on a
two-dimensional grid of values of {θ, σ̃2}.

Letting {θ1, . . . , θG} and {σ̃21, . . . , σ̃2H} be sequences of evenly spaced parameter values, the discrete
approximation to the posterior distribution assigns a posterior probability to each pair {θk, σ̃2l } on the grid,
which is a real joint probability distribution for θ ∈ {θ1, . . . , θG} and σ̃ ∈ {σ̃21, . . . , σ̃2H}

pD(θk, σ̃
2
l |y1, . . . , yn) =

p(θk, σ̃
2
l |y1, . . . , yn)∑G

g=1

∑H
h=1 p(θg, σ̃

2
h|y1, . . . , yn)

=
p(θk, σ̃

2
l , y1, . . . , yn)/p(y1, . . . , yn)∑G

g=1

∑H
h=1 p(θg, σ̃

2
h, y1, . . . , yn)/p(y1, . . . , yn)

=
p(θk, σ̃

2
l , y1, . . . , yn)∑G

g=1

∑H
h=1 p(θg, σ̃

2
h, y1, . . . , yn)

.
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in the sense that it sums to 1:
∑G

g=1

∑H
h=1 p(θg, σ̃

2
h|y1, . . . , yn) = 1

According to Eq.6.1, we can obtain the pD(θk, σ̃2l |y1, . . . , yn). In general, to construct a similarly fine
approximation for a p-dimensional posterior distribution we would need a p-dimensional grid containing 100p

posterior probabilities. This means that discrete approximations will only be feasible for densities having a
small number of parameters.

Besides, according to Eq.6.1, the relative posterior probabilities of one set of parameter values {θ1, σ̃21} to
another {θ2, σ̃22} can be directly computable as their ratio cancels out the integral:

p(θ1, σ̃
2
1|y1, . . . , yn)

p(θ2, σ̃22|y1, . . . , yn)
=
p(θ1, σ̃

2
1, y1, . . . , yn)/p(y1, . . . , yn)

p(θ2, σ̃22, y1, . . . , yn)/p(y1, . . . , yn)
=
p(θ1, σ̃

2
1, y1, . . . , yn)

p(θ2, σ̃22, y1, . . . , yn)
.

6.3 Sampling from the conditional distributions

To proceed with Gibbs sampling, need to calculate the full conditional distributions of the parameters.

6.3.1 The full conditional distribution

1. (In Chapter 5) For θ ∼ N (µ0, τ
2
0 ), then θ|σ2, y1, . . . , yn ∼ N (µn, τ

2
n): θ|σ2, y1, . . . , yn

{σ2, θ|y1, . . . , yn} ∼ normal(µn, σ
2/κn), where

κn = κ0 + n and µn =
(κ0/σ

2)µ0 + (n/σ2)ȳ

κ0/σ2 + n/σ2
=
κ0µ0 + nȳ

κn
, τ 2n =

1
1
τ20
+ n

σ2

=
1

κ0

σ2 +
n
σ2

=
σ2

κ0 + n
.
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2. σ̃2|θ, y1, . . . , yn

p(σ̃2|θ, y1, . . . , yn) ∝ p(y1, . . . , yn, θ, σ̃
2)

= p(y1, . . . , yn|θ, σ̃2)p(θ, σ̃2) = p(y1, . . . , yn|θ, σ̃2)p(θ|σ̃2)p(σ̃2).

If θ and σ̃2 are independent in the prior distribution, then p(θ|σ̃2) = p(θ):

p(σ2 | θ, y1, . . . , yn) ∝ p(y1, . . . , yn|θ, σ̃2)p(σ̃2)

∝

[
(σ2)−n/2exp

(
− 1

2σ2

n∑
i=1

(yi − θ)2

)]
×
[
(σ2)−ν0/2−1exp

(
−σ

2
0ν0/2

σ2

)]

∝ (σ2)−(ν0+1)/2−1 × exp

(
− 1

σ2
× 1

2

(
σ20ν0 +

n∑
i=1

(yi − θ)2

))

So σ2 ∼ inverse-gamma(νn/2, νnσ2n(θ)/2), and σ̃2 ∼ gamma(νn/2, νnσ2n(θ)/2)), with the parameters:

νn = ν0 + n , σ2n(θ) =
1

νn

[
ν0σ

2
0 + ns2n(θ)

]
, s2n(θ) =

∑
(yi − θ)2/n

s2n(θ) is the unbiased estimate of σ2 if θ were known; denote σ2n(θ), s2n(θ) to indicate that σ2n is dependent
on θ which is assumed known.
Now, sample directly from p(σ2|θ, y1, . . . , yn)✓; sample directly from p(θ|σ2, y1, . . . , yn)✓; BUT do not
have a way to sample directly from p(σ2, θ|y1, . . . , yn).
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3. Use the full conditional distributions to sample from the joint posterior distribution
Given σ2(1) (from the marginal posterior distribution p(σ2|θ, y1, . . . , yn))
→ Sample θ(1) ∼ p(θ|σ2(1), y1, . . . , yn) (θ(1), a sample from the marginal distribution p(θ|σ2, y1, . . . , yn);
{θ(1), σ2(1)}, a sample from the joint distribution of {θ, σ2})
→ Sample σ2(2) ∼ p(σ2|θ(1), y1, . . . , yn) (σ2(2), a sample from the marginal distribution p(σ2|y1, . . . , yn);
{θ(1), σ2(2)}, a sample from the joint distribution of {θ, σ2}) → . . .

Two conditional distributions could be used to generate samples from the joint distribution if only we had
a σ2(1) from which to start
The distributions p(θ|σ2, y1, . . . , yn) and p(σ2|θ, y1, . . . , yn) are called the full conditional distributions of
θ and σ2 respectively, as they are each a conditional distribution of a parameter given everything else.

6.4 Gibbs sampling

Given a current state of the parameters ϕ(s) = {θ(s), σ̃2(s)}, we generate a new state as follows:

1. Sample θ(s+1) ∼ p(θ|σ̃2(s), y1, . . . , yn)
2. Sample σ̃2(s+1) ∼ p(σ̃2|θ(s+1), y1, . . . , yn)

3. Let ϕ(s+1) = {θ(s+1), σ̃2(s+1)}

This algorithm is called the Gibbs sampler and generates a dependent sequence of our parameters
{ϕ(1), ϕ(2), . . . , ϕ(S)}.
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6.5 General properties of the Gibbs sampler

Goal: p(ϕ|y1, . . . , yn)

Begin with start values ϕ(0)i for all i. (only have to have start values for all but one parameter)

Sample ϕ(1)1 ∼ p(ϕ1|ϕ(0)2 , . . . , ϕ
(0)
n , . . .) (the full conditional distribution)

Similarly, sample ϕ(1)2 ∼ p(ϕ2|ϕ(1)1 , . . . , ϕ
(0)
n , . . .), ϕ(1)3 ∼ p(ϕ3|ϕ(1)1 , ϕ

(1)
2 . . . , ϕ

(0)
n , . . .).

ϕ(1) =
(
ϕ
(1)
1 · · · ϕ

(1)
n

)
is your first Gibbs sample.

Thus, given starting point ϕ(0)) = {ϕ(0))1 , . . . , ϕ
(0))
p }, the Gibbs sampler generates ϕ(s)) from ϕ(s−1)) as follows:

1. sample ϕ(s)1 ∼ p(ϕ1|ϕ(s−1)
2 , ϕ

(s−1)
3 , . . . , ϕ

(s−1)
p )

2. sample ϕ(s)2 ∼ p(ϕ2|ϕ(s)1 , ϕ
(s−1)
3 , . . . , ϕ

(s−1)
p )

...
p. sample ϕ(s)p ∼ p(ϕp|ϕ(s)1 , ϕ

(s)
2 , . . . , ϕ

(s)
p−1).

This algorithm generates a dependent sequence of vectors:

ϕ(1) = {ϕ(1)1 , . . . , ϕ(1)p }

ϕ(2) = {ϕ(2)1 , . . . , ϕ(2)p }

ϕ(S) =
{
ϕ
(S)
1 , . . . , ϕ(S)p

}
.

In this sequence, ϕ(S) depends on ϕ(0), . . . ,ϕ(S−1) only through ϕ(S−1), i.e. ϕ(S) is conditionally independent
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of ϕ(0), . . . ,ϕ(S−2) given ϕ(S−1). This is called the Markov property, and so the sequence is called a Markov
chain.

Or, each ϕ(s+1)
i conditioning on the ϕ(s)i of the previous Gibbs sampling ϕ(s) and the new samples ϕ(s+1)

i as
they are received. Then ϕ(s+1) =

(
ϕ
(s+1)
1 · · · ϕ

(s+1)
n

)
, the s + 1 th sample is only conditionally dependent

on the s th sample. Hence the term “Markov Chain Monte Carlo”.

6.5.1 Property

1. The sampling distribution of ϕ(s) approaches the target distribution as s→ ∞, no matter what the starting
value ϕ(0) is.

Pr(ϕ(s) ∈ A) →
∫
A

p(ϕ) dϕ as s→ ∞.

2. We can approximate E[g(ϕ)] (g is function of interest) with the sample average of {g(ϕ(1)), . . . , g(ϕ(S))},
just as in Monte Carlo approximation:

1

S

S∑
s=1

g(ϕ(s)) → E[g(ϕ)] =

∫
g(ϕ)p(ϕ)dϕ as S → ∞.

Such approximation: Markov chain Monte Carlo (MCMC) approximation.
Such procedure: an MCMC algorithm
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6.5.2 Distinguishing parameter estimation from posterior approximation

Distinguish the part of the data analysis which is statistical from that which is numerical approximation

The necessary ingredients of a Bayesian data analysis:

1. Model specification: a collection of probability distributions p(y|ϕ), ϕ ∈ Φ which should represent the
sampling distribution of your data for some value of ϕ ∈ Φ;

2. Prior specification: a probability distribution p(ϕ), ideally representing someone’s prior information about
which parameter values are likely to describe the sampling distribution. The posterior p(ϕ|y) is completely
determined:

p(ϕ|y) = p(ϕ)p(y|ϕ)
p(y)

=
p(ϕ)p(y|ϕ)∫
p(ϕ)p(y|ϕ)dϕ

3. Posterior summary: a description of the posterior distribution p(ϕ|y), done in terms of particular quantities
of interest such as posterior means, medians, modes, predictive probabilities, and confidence regions.

Monte Carlo samples from p(ϕ|y): a way to “see” p(ϕ|y). Thus, MC and MCMC sampling algorithms

are not models
they do not generate “more information” than is in y and p(ϕ),
they are simply “ways of looking at” p(ϕ|y).

Thus:

“Estimation”: describe how we use p(ϕ|y) to make inference about ϕ
“Approximation”: describe the use of Monte Carlo procedures to approximate integrals
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6.6 Introduction to MCMC diagnostics

For any functions g of interest, the purpose of Monte Carlo or Markov chain Monte Carlo approximation is
to obtain a sequence of parameter values {ϕ(1), . . . , ϕ(S)} such that

1

S

S∑
s=1

g(ϕ(s)) ≈
∫
g(ϕ)p(ϕ) dϕ

1. we want the empirical average of {g(ϕ(1)), . . . , g(ϕ(S))} to approximate the expected value of g(ϕ) under
a target probability distribution p(ϕ) (in Bayesian inference, usually the posterior distribution p(ϕ|θ)).

2. Thus, need the empirical distribution of the simulated sequence {ϕ(1), . . . , ϕ(S)} to look like the target
distribution p(ϕ).

Monte Carlo and Markov chain Monte Carlo are two ways of generating such a sequence.

Monte Carlo simulation: generate independent samples from the target distribution. Independent MC
samples automatically create a sequence that is representative of p(ϕ): The probability that ϕ(s) ∈ A for
any set A is

∫
A p(ϕ)dϕ.

This is true for every s ∈ {1, . . . , S} and conditionally or unconditionally on the other values in the
sequence.
This is not true for MCMC samples, in which case all we are sure of is that

lim
s→∞

Pr(ϕ(s) ∈ A) =

∫
A

p(ϕ) dϕ.
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6.6.1 Interpretation

In the case of a generic parameter ϕ and target distribution p(ϕ), think of the sequence {ϕ(1), . . . , ϕ(S)} as
the trajectory of a particle ϕ moving around the parameter space.

MCMC integral approximation: the amount of time the particle spends in a given set A is proportional to
the target probability

∫
A p(ϕ)dϕ.

Suppose A1, A2 and A3 are disjoint subsets of the parameter space, with Pr(A2) < Pr(A1) ≈ Pr(A3). In
terms of the integral approximation, we want the particle to spend little time in A2, and about the same amount
of time in A1 as in A3. It is possible that we would accidentally start our Markov chain in A2 because p(ϕ) is
unknown. Thus, it is critical that the number of iterations S is large enough so that the particle has a chance to

(1) move out of A2 and into higher probability regions → chain has achieved stationarity or converged
Thus, one thing to check for is stationarity, or that samples taken in one part of the chain have a similar
distribution to samples taken in other parts.

For semiconjugate prior, stationarity can be achieved quickly
For some highly parameterized models, it takes a long time to be stational

(2) move between A1 and A3, and any other sets of high probability

6.6.2 About Item 2

Item 2 above (called the speed of mixing): how quickly the particle moves around the parameter space.

An independent MC sampler has perfect mixing: It has zero autocorrelation and can jump between
different regions of the parameter space in one step.
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An MCMC sampler might have poor mixing, take a long time between jumps to different parts of the
parameter space and have a high degree of autocorrelation.

How does the correlation of the MCMC samples affect posterior approximation?

Suppose: Approximate the integralE[ϕ] =
∫
ϕp(ϕ)dϕ = ϕ0 using the empirical distribution of{ϕ(1), . . . , ϕ(S)}.

1. ϕ-values: independent MC samples from p(ϕ), then the variance of ϕ̄ =
∑
ϕ(s)/S is

VarMC[ϕ̄] = E[(ϕ̄− ϕ0)
2] =

Var[ϕ]

S
,where Var[ϕ] =

∫
ϕ2p(ϕ)dϕ− ϕ20

Recall from Chapter 4 that the square root of VarMC [ϕ̄] is the Monte Carlo standard error, and is a measure
of how well we expect ϕ̄ to approximate the integral

∫
ϕp(ϕ)dϕ. If we were to rerun the MC approximation

procedure many times, perhaps with different starting values or random number generators, we expect that
ϕ0, the true value of the integral, would be contained within the interval ϕ̄± 2

√
VarMC[ϕ̄] for roughly 95%

of the MC approximations. We can make this as small as we want by generating more MC samples.
2. MCMC (such as the Gibbs sampler)

Assuming stationarity has been achieved, the expected squared difference from the MCMC integral
approximation ϕ̄ to the target ϕ0 =

∫
ϕp(ϕ)dϕ is the MCMC variance, and is given by

VarMCMC[ϕ̄] = E[(ϕ̄− ϕ0)
2] = E[{ 1

S

∑
(ϕ(s) − ϕ0)}2]

=
1

S2
E[

S∑
s=1

(ϕ(s) − ϕ0)
2 +

∑
s ̸=t

(ϕ(s) − ϕ0)(ϕ
(t) − ϕ0)] =

1

S2

S∑
s=1

E[(ϕ(s) − ϕ0)
2] +

1

S2

∑
s ̸=t

E[(ϕ(s) − ϕ0)(ϕ
(t) − ϕ0)]

= VarMC[ϕ̄] +
1

S2

∑
s ̸=t

E[(ϕ(s) − ϕ0)(ϕ
(t) − ϕ0)].
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So the MCMC variance is equal to the MC variance plus a term that depends on the correlation of samples
within the Markov chain. This term is generally positive and so the MCMC variance is higher than the
MC variance, meaning that we expect the MCMC approximation to be further away from ϕ0 than the MC
approximation is. The higher the autocorrelation in the chain, the larger the MCMC variance and the worse
the approximation is.

How much correlation there is in the chain?

Compute the sample autocorrelation function:

For a generic sequence of numbers {ϕ(1), . . . , ϕ(S)}, the lag-t autocorrelation function estimates the corre-
lation between elements of the sequence that are t steps apart:

acft(ϕ) =
1

S−t

∑S−t
s=1(ϕs − ϕ̄)(ϕs+t − ϕ̄)
1

S−1

∑S
s=1(ϕs − ϕ̄)2

How much sample?

Seff , the number of independent MC samples necessary to give the same precision as the MCMC samples:

VarMCMC[ϕ̄] =
Var[ϕ]

Seff

The higher the autocorrelation, the more MCMC samples we need to attain a given level of precision for
our approximation.
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7 The multivariate normal model

Before: univariate models → models for a single measurement on each member of a sample of individuals
or each run of a repeated experiment
Now: datasets are frequently multivariate, having multiple measurements for each individual or experiment
→ the most useful model for multivariate data, the multivariate normal model

7.1 The multivariate normal density

7.1.1 Example: reading comprehension

We make the step to two variables by example. Consider a sample (n = 22) of children who are given
reading comprehension tests before and after receiving a method. We can denote these two variables for student
i as a vector Yi, where Yi,1 is the before score, and Yi,2 is the after score:

Yi =

(
Yi,1
Yi,2

)
, E[Y ] =

(
E[Yi,1]

E[Yi,2]

)
=

(
θ1
θ2

)
= θ

Σ = Cov[Y ] =

(
E[Y 2

1 ]− E[Y1]
2 E[Y1Y2]− E[Y1] E[Y2]

E[Y1Y2]− E[Y1] E[Y2] E[Y 2
2 ]− E[Y2]

2

)
=

(
σ21 σ1,2
σ1,2 σ22

)

Correlation coefficient(X, Y ) =
Cov(X, Y )

SD(X)SD(Y )
=

σ1,2
σ1σ2

=
σ1,2√
σ21σ

2
2
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7.1.2 Multivariate normal density

a univariate normal model: (θ, σ2), or equivalently its first two moments E[Y ] = θ, E[Y 2] = σ2 + θ2

a multivariate normal model (in 7.1.1): use the first-order moments E[Y1], E[Y2] and the second-order
moments E[Y 2

1 ], E[Y1Y2], E[Y
2
2 ]

If y ∼ N (θ,Σ) (a p-dimensional data vector Y has a multivariate normal distribution) where

y =


y1
y2
...
yp

 θ =


θ1
θ2
...
θp

 Σ =


σ21 σ1,2 · · · σ1,p
σ1,2 σ22 · · · σ2,p

... ... ...
σ1,p · · · · · · σ2p


then

p(y | θ,Σ) = (2π)−p/2|Σ|−1/2exp
(
−1

2
(y − θ)TΣ−1(y − θ)

)
=

1

(2π)p/2
1

|Σ|1/2
exp
(
−1

2
(y − θ)TΣ−1(y − θ)

)
where |A| is the determinant of A measureing how “big” A is; bTA is equal to the 1× p vector

(
∑p

j=1 bjaj,1, . . . ,
∑p

j=1 bjaj,p), and bTAb is the number
∑p

j=1

∑p
k=1 bjbkaj,k.

An interesting feature of the multivariate normal distribution: the marginal distribution of each variable Yj
is a univariate normal distribution, with mean θj and variance σ2j .
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7.2 A semiconjugate prior distribution for the mean

A full closed-form solution for the posterior→ too complicated. →Compute conjugate priors and posteriors
for the full conditional distributions of the θ and Σ separately, and use Gibbs sampling to easily estimate the
joint posterior distribution. Our goal is to obtain the full conditional distribution {θ | y1, . . . ,yn,Σ}

First, calculating {θ | y1, . . . ,yn,Σ}:

Analogous to the univariate case, for the multivariate normal distribution, a conjugate prior to the population
mean is a multivariate normal: Let µ0 be the prior mean, and Λ0 be the covariance matrix of µ0. Then we
belief θ | Σ ∼ N (µ0,Λ0). This prior:

p(θ | Σ) = (2π)−p/2|Λ0|−1/2 exp{−1

2
(θ − µ0)

TA−1
0 (θ − µ0)}

= (2π)−p/2|Λ0|−1/2 exp

[
−1

2
(θTΛ−1

0 θ − µT
0Λ

−1
0 θ − θTΛ−1

0 µ0 + µT
0Λ

−1
0 µ0)

]
= (2π)−p/2|Λ0|−1/2 exp

(
−1

2
θTΛ−1

0 θ + θTΛ−1
0 µ0 −

1

2
µT

0Λ
−1
0 µ0

)
∝ exp

(
−1

2
θTΛ−1

0 θ + θTΛ−1
0 µ0

)
= exp

(
−1

2
θTA0θ + θTb0

)
,

(7.1)

where A0 = Λ−1
0 , i.e. the precision matrix (which echoes the univariate case) and b0 = Λ−1

0 µ0 = A0µ0

We will see this simplified form show up when working with the sampling models and posterior distribution.
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Let’s first look at the sampling model/likelihood function. The sampling model is that {Y1, . . . ,Yn | θ,Σ}
are i.i.d. multivariate N (θ,Σ). Thus, the joint sampling density of the observed vectors y1, . . . ,yn is:

p(y1, . . . ,yn|θ,Σ) =
n∏

i=1

(2π)−p/2|Σ|−1/2 exp{−1

2
(yi − θ)TΣ−1(yi − θ)}

= (2π)−np/2|Σ|−n/2 exp{−1

2

n∑
i=1

(yi − θ)TΣ−1(yi − θ)}

∝ exp{−1

2
θTA1θ + θTb1}

where A1 = nΣ−1 and b1 = nΣ−1ȳ. ȳ is the vector of sample averages for each variable:

ȳ = (
1

n

n∑
i=1

yi,1, . . . ,
1

n

n∑
i=1

yi,p)
T .

Thus, the posterior for θ is:

p(θ | y1, . . . ,yn,Σ) = p(θ | Σ)p(y1, . . . ,yn | θ,Σ)/p(y1, . . . , bmyn | Σ) ∝ p(θ | Σ)p(y1, . . . ,yn | θ,Σ)

∝ exp
(
−1

2
θTA0θ + θTb0

)
× exp(−1

2
θTA1θ + θTb1)

= exp
(
−1

2
θTAnθ + θTbn

)
where we have combined terms such that An = A0+A1 = Λ−1

0 +nΣ−1 and bn = b0+b1 = Λ−1
0 µ0+nΣ

−1ȳ.
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So if θ | Σ ∼ N (µ0,Λ0), then θ | y1, . . . ,yn,Σ ∼ N (µn,Λn). The conditional distribution of θ therefore
must be a multivariate normal distribution with covariance A−1

n and mean A−1
n bn,

Thus, like the univariate case:

Cov(θ | y1, . . . ,yn,Σ) = Λn = (A−1
0 + nΣ−1)−1

a combination of prior and posterior precision
E(θ | y1, . . . ,yn,Σ) = µn = (A−1

0 + nΣ−1)−1(Λ−1
0 µ0 + nΣ−1ȳ)

a weighted average of the prior estimate of the mean and the sample mean.
p(θ | y1, . . . ,yn,Σ) = multivariate normal (µn,Λn)

7.3 The inverse-Wishart distribution

The (semi-)conjugate prior and posterior distribution for the mean θ ✓. Now: the covariance matrix Σ

For the univariate case, a semi-conjugate prior distribution for the variance σ2 was the inverse-Gamma
distribution (σ2 ∼ IG; 1/σ2 ∼ Ga)
For the multivariate case, a semi-conjugate prior distribution for the covariance matrix Σ is the inverse of
the multivariate analog of the Gamma distribution, known as a Wishart distribution (Σ ∼ IW ; Σ−1 ∼ W )

The inverse-Wishart distribution is used to make sure the variance-covariance matrix Σ is:

positive definite, that is: x′Σx > 0 for all vectors x
symmetric, that is: σj,k = σk,j

so that it can be a valid prior distribution.

88



7.3.1 Empirical covariance matrices

Denote zi as a p× 1 vector, then ziz
T
i is a p× p matrix as follow:

ziz
T
i =


z2i,1 zi,1zi,2 · · · zi,1zi,p
zi,2zi,1 z2i,2 · · · zi,2zi,p

... ...
zi,pzi,1 zi,pzi,2 · · · z2i,p

 .

If zi are samples from a population with zero mean, we can think of the matrix ziz
T
i /n as the contribution

of vector zi to the estimate of the covariance matrix of all of the observations. The sum of squares matrix of
a collection of n p-dimensional multivariate vectors z1, . . . ,zn is:

∑n
i=1 ziz

T
i = ZTZ, where Z is the n × p

matrix whose i-th row is zT
i . Thus, if we divide the sum of squares matrix by n, we get a sample covariance

matrix, an unbiased estimator of the population covariance matrix.

If n > p and the zi are linearly independent, then ZTZ will be positive definite and symmetric.

To summarize, generating samples from a Wishart distribution is analogous to sampling a set of variables
from a multivariate normal distribution and calculating the empirical covariance matrix of the samples. More
specifically, with parameters ν0 ∈ Z+ and S0 (a p× p covariance matrix),

1. Sample z1, . . . , zν0 ∼ (i.i.d.)N (0,S−1
0 )

2. Calculate ZTZ =
∑ν0

i=1 ziz
T
i

3. Repeat this procedure over and over again, generating matrices (sum of squares matrices) ZT
1 Z1, . . . ,Z

T
SZ

Then ZT
1 Z1, . . . ,Z

T
SZ ∼ Wishart(ν0,S−1

0 ).
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Some properties of samples from the Wishart with parameters (ν0,S−1
0 ):

If ν0 > p then ZTZ is positive definite
ZTZ is symmetric
E(ZTZ) = ν0S

−1
0

Recall the univariate case, we have:

Wishart distribution is a semi-conjugate prior distribution for the precision matrix Σ−1

inverse-Wishart distribution is a semi-conjugate prior distribution for the covariance matrix Σ.

To sample a covariance matrix Σ from an inverse-Wishart distribution, we first follow the above step and set
Σ(s) = (Z(s)TZ(s))−1 (actually Σ = (ZTZ)−1)

Note that E(Σ−1) = ν0S
−1
0

E(Σ) =
1

ν0 − p− 1
(S0)

−1 =
1

ν0 − p− 1
S0(so not exactly the inverse of S−1

0 )

Specifying parameters

If we have a prior expectation of a covariance matrix Σ0, then we can center our prior around the empirical
covariance matrix in two suggested ways:

Set ν0 large and set S0 = (ν0 − p− 1)Σ0, such that E(Σ) = ν0−p−1
ν0−p−1Σ0 = Σ0 and (due to large ν0) the prior

is fairly concentrated around Σ0

Set ν0 = p + 2 and let S0 = Σ0, such that E(Σ) = 1
p+2−p−1Σ0 = Σ0 but only loosely centered around Σ0

(due to fairly small ν0)
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7.3.2 Full conditional distribution of the covariance matrix, Σ | y1, . . . ,yn,θ

The inverse-Wishart(ν0,S−1
0 ) density is given by

p(Σ) =

[
2ν0p/2π(

p
2)/2|S0|−ν0/2

p∏
j=1

Γ([ν0 + 1− j]/2)

]−1

× |Σ|−(ν0+p+1)/2 × exp{−tr(S0Σ
−1)/2}.

But all we need to know is if Σ ∼ inverse-Wishart(ν0,S−1
0 ),

p(Σ) ∝ |Σ|−(ν0+p+1)/2 × exp
(
−tr(S0Σ

−1)/2
)

where “tr” stands for trace and for a square p× p matrix A, tr(A) =
∑p

j=1 aj,j, sum of the diagonal elements.
Besides, tr(BTBA) =

∑K
k=1 b

T
kAbk where B is the matrix whose k-th row is bTk .

The sampling model (likelihood):

p(y1, . . . ,yn|θ,Σ) = (2π)−np/2|Σ|−n/2 exp

(
−1

2

n∑
i=1

(yi − θ)TΣ−1(yi − θ)

)

Using some linear algebra,

n∑
i=1

(yi − θ)TΣ−1(yi − θ) = tr

((
n∑

i=1

(yi − θ)(yi − θ)T

)
Σ−1

)
= tr

(
SθΣ

−1
)

where Sθ =
∑n

i=1(yi − θ)(yi − θ)T is the residual sum of squares matrix for the vectors y1, . . . ,yn.
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Recall that, since inverse-Wishart matrices involve sampling from a normal distribution with mean 0, indeed
S0 can be treated as a residual covariance matrix, given that E(yi − θ) = 0. To obtain the residual sum of
squares matrix, you calculate the sum of squares for the residual vectors yi−θ; Conditional on θ, 1

nSθ provides
an unbiased estimate of the true covariance matrix Cov[Y ].

Thus
p(y1, . . . ,yn | θ,Σ) = (2π)−np/2|Σ|−n/2 exp

(
−tr(SθΣ

−1)/2
)

Now we can calculate the full conditional distribution of Σ:

p(Σ | y1, . . . ,yn,θ) ∝ p(Σ)× p(y1, . . . ,yn | θ,Σ)

∝
[
|Σ|−(ν0+p+1)/2 × exp

(
−tr(S0Σ

−1)/2
)]

×
[
|Σ|−n/2 exp

(
−tr(SθΣ

−1)/2
)]

= |Σ|−(ν0+n+p+1)/2 exp
{
−tr([S0 + Sθ] Σ

−1)/2
}

∝ dinverse-Wishart
(
ν0 + n, [S0 + Sθ]

−1
)

= dinverse-Wishart
(
νn,S

−1
n

)
where νn = ν0 + n and Sn = S0 + Sθ.

Like the univariate case, the full conditional distribution on Σ is dependent on (1)νn = ν0 + n, a “posterior
sample size”, which is a sum of the prior sample size ν0 and the data sample size n, and (2)Sn = S0 + Sθ, the
“prior” residual sum of squares + the residual sum of squares from the data(the empirical sum of squares).

Thus we have

{Σ|y1, . . . ,yn,θ} ∼ inverse- Wishart(ν0 + n, [S0 + Sθ]
−1) = inverse- Wishart(νn,S−1

n )
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Finally, notice that the conditional expectation of the covariance matrix is a weighted average of the prior
expectation 1

ν0−p−1S0 and the unbiased estimator 1
nSθ:

E(Σ | y1, . . . ,yn,θ) =
1

νn − p− 1
(Sn) =

1

ν0 + n− p− 1
(S0 + Sθ)

=
ν0 − p− 1

ν0 + n− p− 1

1

ν0 − p− 1
S0 +

n

ν0 + n− p− 1

1

n
Sθ.

7.4 Summary of inference with the multivariate normal

Like in Chapter 5, here we summarize the moving parts of inference with the multivariate normal sampling
model. There are four prior parameters (note some are matrices):

(Semiconjugate) prior

S0 for the inverse-Wishart
related to the prior estimate of the covariance between the variables
Only related to because as mentioned above, there are some guidelines for what to use for ν0 and S0

such that the prior distribution is centered around Σ0, the *true prior estimate of the covariance matrix
you are looking for.

ν0 for the inverse-Wishart
a “prior sample size” from which the initial estimate of the variance is observed

µ0 for the multivariate normal
an initial estimate for the population mean

Λ0 for the multivariate normal
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the covariance (i.e. uncertainty) of the initial estimate for the population mean

In other words, we have these semiconjugate priors (or multivariate normal-inverse-Wishart prior):

{Σ} ∼ inverse-Wishart(ν0,S−1
0 )

{θ | Σ} ∼ multivariate normal(µ0,Λ0)

Similarly to the univariate case, the estimate of the covariance matrix for the inverse-Wishart prior is
decoupled from the estimate of the covariance of the mean vector in the multivariate normal prior, although
it’s common to set these the same.

Note that this is somewhat different than the univariate case; since there were no covariances to worry about,
what was decoupled was “prior sample sizes” from which the prior variance and prior mean are observed. Like
here, it was also common to set these the same.

Posterior The updated parameters are

Sn = S0 + Sθ, where Sθ is the residual sum of squares matrix
νn = ν0 + n

µn = (Λ−1
0 + nΣ−1)−1(Λ0µ0 + nΣ−1ȳ) = Λn(Λ

−1
0 µ0 + nΣ−1ȳ)

Λn = (Λ−1
0 + nΣ−1)−1

The full conditional posterior distributions are:

{Σ|y1, . . . ,yn,θ} ∼ inverse-Wishart(νn,S−1
n )

{θ|y1, . . . ,yn,Σ} ∼ multivariate normal(µn,Λn)
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7.5 Gibbs sampling of the mean and covariance

{θ|y1, . . . ,yn,Σ} ∼ multivariate normal(µn,Λn)

{Σ|y1, . . . ,yn,θ} ∼ inverse-Wishart(νn,S−1
n ),

Knowing these values, we can now perform Gibbs sampling to sample from p(θ,Σ | y1, . . . ,yn). Specif-
ically, we start with an estimate of one of the two values-Σ(0) for simplicity- and use the following two
steps:

1. Sample θ(s+1) ∼ N (µn,Λn). This depends on the inverse of the previous Σ(s).

a) compute µn and Λn from y1, . . . ,yn and Σ(s);

b) sample θ(s+1) ∼ multivariate normal(µn,Λn).

2. Sample Σ(s+1) ∼ inverse-Wishart(νn,S−1
n ), where the parameters depend on θ(s+1).

a) compute Sn from y1, . . . ,yn and θ(s+1);

b) sample Σ(s+1) ∼ inverse-Wishart(ν0 + n,S−1
n ).
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7.6 Missing data and imputation

The posterior distribution for θ and Σ depends on
∏n

i=1 p(yi|θ,Σ), but p(yi | θ,Σ) cannot be computed if
components of yi are missing. Either throw away all subjects with incomplete data or impute missing values
with a population mean or some other fixed value is incorrect.

How to handle this? A map is: Let Oi = (O1, . . . , Op)
T be a binary vector of zeros and ones (thus O is a

p× j matrix, p is the number of samples and j is the order of variables), and define:

Oi,j =

{
1 if Yi,j is observed
0 if Yi,j is missing

Assume that missing data are missing at random, meaning that Oi and Yi are statistically independent and that
the distribution of Oi does not depend on θ or Σ. Our sampling probability for data from subject i is p(oi)

multiplied by the marginal probability of the observed variables, after integrating out the missing variables:

p(oi, {yi,j : oi,j = 1}|θ,Σ) = p(oi)× p({yi,j : oi,j = 1}|θ,Σ)

= p(oi)×
∫ p(yi,1, . . . , yi,p|θ,Σ) ∏

yi,j :oi,j=0

dyi,j

 .

The correct thing is to integrate over the missing data to obtain the marginal probability of the observed data.

But combining marginal densities from subjects having different amounts of information can be notationally
awkward. Fortunately, our integration can alternatively be done quite easily using Gibbs sampling.
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7.6.1 Gibbs sampling with missing data

We can use Gibbs sampling to estimate the posterior p(θ,Σ | Y).

Here, however, we don’t have a full dataset Y (a n × p matrix); rather, we have an observed dataset Yobs

and missing values Ymiss. We can still use the Gibbs sample, and the key idea is to also estimate the posterior
distribution on Ymiss, which will also help us make more accurate estimates on θ and Σ. Our goal is to obtain
p(θ,Σ,Ymiss | Yobs), the posterior distribution of unknown and unobserved quantities.

Given starting values Σ(0) and Y
(0)
miss - perhaps the empirical covariance matrix and the unconditional means

of the observed sample, we generate {θ(s+1),Σ(s+1),Y
(s+1)
miss } from {θ(s),Σ(s),Y

(s)
miss} by:

1. Sample θ(s+1) from p(θ | Yobs,Y
(s)
miss,Σ

(s))

2. Sample Σ(s+1) from p(Σ | Yobs,Y
(s)
miss,θ

(s+1))

3. Sample Y
(s+1)
miss from p(Ymiss | Yobs,θ

(s),Σ(s+1))

For Steps 1 and 2, you simply combine the sampled missing data Y(s)
miss and the observed data Yobsfor a full

dataset Y and sample from the full conditional distributions like normal.

For Step 3, Noted that once we’ve sampled a set of missing values, notice that we now have a full “dataset”
if we combine our observed values with the newly sampled missing values. This means that we can sample
from the full conditional distributions of θ and Σ normally, and from there, once again sample a new set of
Ymiss.
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Before this, we need to obtain p(Ymiss | Yobs,θ
(s),Σ(s)). Thus:

p(Ymiss | Yobs,θ,Σ) ∝ p(Ymiss,Yobs | θ,Σ)

=
n∏

i=1

p(yi,miss,yi,obs | θ,Σ)

∝
n∏

i=1

p(yi,miss | yi,obs,θ,Σ),

Specifically, to sample from the above, we simply sample the missing values of each data point independently.
Thus, we need to know the p(yi,miss | yi,obs,θ,Σ). The following properties can help us:

For a data point y with missing values, let a be the indices of the observed values and b be the indices of
the missing values. Then it is shown that sampling y[b] given known observed variables and the parameters θ
and Σ also follows a multivariate normal distribution, but with mean and covariance matrices with dimension
|b| that take into account the existing variables:

{y[b]|y[a],θ,Σ} ∼ multivariate normal(θb|a,Σb|a), where

θb|a = θ[b] + Σ[b,a](Σ[a,a])
−1(y[a] − θ[a])

Σb|a = Σ[b,b] − Σ[b,a](Σ[a,a])
−1Σ[a,b].

where θ[b] refers to the elements of θ corresponding to the indices in b, and Σ[a,b] refers to the matrix made up
of the elements that are in rows a and columns b of Σ.
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Intuitively, the mean of the multivariate normal distribution on the missing values given some observed
values starts with the unconditional mean of the observed values, plus or minus some offset that depends
on the observed values and the correlations between the observed and missing values.
For example, if it is known that a datapoint’s observed values are quite high relative to the mean (ya−θa),
and that there is a positive correlation between observed values and missing values, we would expect the
missing values to generally be higher as well.
Intuitively, the covariance matrix of the conditional distribution on the missing values starts with the
unconditional covariance, but notice the minus sign; since the covariance matrix is positive definite,
knowing about some observed variables will decrease our uncertainty about the missing values.

Therefore, we can use the Gibbs sampler to achieve our goal.

Prediction and regression

E[y[b]|θ,Σ,y[a]] = θ[b] + βT
b|a(y[a] − θ[a])

where βT
b|a = Σ[b,a](Σ[a,a])

−1. Since this takes the form of a linear regression model, we call the value of βb|a
the regression coefficient for y[b] given y[a] based on Σ.

7.7 Discussion and further references

The multivariate normal model can be justified as a sampling model for reasons analogous to those for the
univariate normal model (see Section 5.7): It is characterized by independence between the sample mean and
sample variance (Rao, 1958), it is a maximum entropy distribution and it provides consistent estimation of the
population mean and variance, even if the population is not multivariate normal.
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8 Group comparisons and hierarchical modeling

A common task in data analysis is to compare summary statistics for two or more groups. In this chapter
we cover the Bayesian approach to doing this. Specifically, we discuss models for the comparison of means
across groups.

Parameterize the two population means by their average and their difference. → extended to the multigroup
case, where the average group mean and the differences across group means are described by a normal sampling
model. → This model, together with a normal sampling model for variability among units within a group,
make up a hierarchical normal model that describes both within-group and between-group variability.

8.1 Comparing two groups

(A commonly taught data analysis procedure) A standard method in (frequentist) introductory statistics
for comparing the means of two populations is to compute the t-statistic of the observed mean difference and
obtain the two-sided p-value.

t(y1,y2) =
ȳ1 − ȳ2

sp
√
1/n1 + 1/n2

, s2p = [(n1 − 1)s21 + (n2 − 1)s22]/(n1 + n2 − 2)

Then, if p < 0.05 (or any other significance level), we reject the model that the two groups have the same
distribution, conclude that θ1 ̸= θ2, and use the estimates θ̂1 = ȳ1 and θ̂2 = ȳ2 (i.e. the ML estimators for θ1 and
θ2 independently). Otherwise, we accept the model that the two groups have the same distribution, conclude
that θ1 = θ2, and let θ̂1 = θ̂2 = (

∑
yi,1 +

∑
yi,2)/(n1 + n2) be the pooled mean of the two groups.
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Sometimes this paradigm doesn’t make too much sense. Consider borderline in which our p-value is close
to 0.05. It seems like a technicality to treat the means as completely different if p = 0.051, and completely the
same if p = 0.049- a difference that could hypothetically be observed by simply sampling one more data point.

The Bayesian approach is to treat the two populations as being sampled from a common mean θ plus
some difference δ, where we estimate both θ and δ. Then the observed difference δ can vary continuously.
Specifically, our sampling model for a value from either group is

Yi,1 = µ+ δ + ϵi,1, Yi,2 = µ− δ + ϵi,2

where we assume values from both groups have a common variance ϵi,j ∼ i.i.d. N (0, σ2). Besides, θ1 = µ+ δ

and θ2 = µ− δ, δ represents half the population difference in means, as (θ1 − θ2)/2 = δ, and µ represents the
pooled average, as (θ1 + θ2)/2 = µ.

8.1.1 Prior and posterior distributions

Prior The joint prior for all three parameters of our model µ, δ, σ2 is unsurprising. We treat the parameters
as independent, so p(µ, δ, σ2) = p(µ)p(δ)p(σ2) where

µ ∼ N (µ0, γ
2
0)

δ ∼ N (δ0, τ
2
0 )

σ2 ∼ inverse-gamma(ν0/2, σ20ν0/2)

Notice that we specify prior distributions for the common mean and variance, but we also express an
estimate δ (and certainty of the estimate) for the difference between the group means.
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Posterior

Then the full conditional distributions of the parameters are

µ | y1,y2, δ, σ
2 ∼ N (µn, γ

2
n)

µn = γ2n ×
[
µ0/γ

2
0 +

∑n1

i=1(yi,1 − δ)/σ2 +
∑n2

i=1(yi,2 + δ)/σ2
]

γ2n =
[
1/γ20 + (n1 + n2)/σ

2
]−1

δ | y1,y2, µ, σ
2 ∼ N (δn, τ

2
n)

δn = τ 2n ×
[
δ0/τ

2
0 +

∑n1

i=1(yi,1 − µ)/σ2 −
∑n2

i=1(yi,2 − µ)/σ2
]

τ 2n =
[
1/τ 20 + (n1 + n2)/σ

2
]−1

σ2 | y1,y2, µ, δ ∼ inverse-gamma(νn/2, σ2nνn/2)
νn = ν0 + n1 + n2
νnσ

2
n = ν0σ

2
0 +

∑n1

i=1(yi,1 − [µ+ δ])2 +
∑n2

i=1(yi,2 − [µ− δ])2

8.2 Comparing multiple groups

Let’s extend this to a > 2 group case. Assume for our example above that we have many schools, which we
assume are samples from a population of schools. So our dataset is hierarchical or multilevel since there are
samples of schools and within each school samples of students, i.e., a hierarchy of nested populations.

Of course, the simplest type of multilevel data has 2 levels, in which one level consists of groups and the
other consists of units within groups. In this case we denote yi,j as the data on the ith unit in group j.
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8.2.1 Exchangeability and hierarchical models

If exchangeability holds for all values of n, then de Finetti’s theorem says that an equivalent formulation of
our information is that

ϕ ∼ p(ϕ)

{Y1, . . . , Yn|ϕ} ∼ i.i.d. p(y|ϕ).
In other words, the random variables can be thought of as independent samples from a population described
by some fixed but unknown population feature ϕ. In the normal model, for example, we take ϕ = {θ, σ2} and
model the data as conditionally i.i.d. normal(θ, σ2).

Now consider a model describing our information about a hierarchical data {Y1, . . . ,Ym}, where Yj =

{Y1,j, . . . , Ynj ,j}.

What properties should a model p(y1, . . . ,ym) have?

First consider p(yj) = p(y1,j, . . . , ynj ,j), the marginal probability density of data from a single group j.
We can treat Y1,j, . . . , Ynj ,j as exchangeable. If group j is large compared to the sample size nj , then we can
model the data within group j as conditionally i.i.d. given some group-specific parameter ϕj, which we call
the within-group sampling variability:

{Y1,j, . . . , Ynj ,j | ϕj} ∼ i.i.d. p(y | ϕj)

Further, if we have many groups with parameters ϕj that we assume are sampled from a population of
groups we can again use de Finetti’s theorem to treat the group means ϕj as conditionally i.i.d. given another
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parameter, which we call the between-group sampling variability:

{ϕ1, . . . , ϕm | ψ} ∼ i.i.d. p(ϕ | ψ)

But how should we represent our information about ϕ1, . . . , ϕm? If the groups themselves are samples from
some larger population of groups, then exchangeability of the group-specific parameters might be appropriate.
Applying de Finetti’s theorem a second time gives

{ϕ1, . . . , ϕm|ψ} ∼ i.i.d. p(ϕ|ψ)

for some sampling model p(ϕ | ψ) and an unknown parameter ψ. Then we simply need a prior distribution on
the parameter for the group parameters (a ”hyperparameter”) ψ:

ψ ∼ p(ψ)

Note that we can extend this hierarchy arbitrarily:

{y1,j, . . . , ynj ,j|ϕj} ∼ i.i.d. p(y|ϕj) (within-group sampling variability)
{ϕ1, . . . , ϕm|ψ} ∼ i.i.d. p(ϕ|ψ) (between-group sampling variability)

ψ ∼ p(ψ) (prior distribution)

p(y|ϕ) and p(ϕ|ψ) both represent sampling variability among populations of objects. In contrast, p(ψ)
represents information about a single fixed but unknown quantity. For this reason, we refer to p(y|ϕ) and
p(ϕ|ψ) as sampling distributions, and are conceptually distinct from p(ψ), which is a prior distribution. The
data will be only used to estimate the distributions p(y|ϕ) and p(ϕ|ψ).
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8.3 The hierarchical normal model

The hierarchical normal model: treat the data within a group as being normally distributed with some mean
θj and variance σ2, and the means among groups to also be normally distributed according to some other mean
µ and variance τ 2. Specifically, we have

ϕj = {θj, σ2}, p(y|ϕj) = normal(θj, σ2), Yi,j | ϕj ∼ N (θj, σ
2) (within-group model)

ψ = {µ, τ 2}, p(θj|ψ) = normal(µ, τ 2) θj | ψ ∼ N (µ, τ 2) (between-group model)

So form groups, we have those following unknown parameters: group-specific means {θ1, . . . , θm}, the within-
group variance σ2 (now we’re assuming the data within groups share a common variance σ2 that doesn’t depend
on the group j.), and the mean and variance of the group-specific means (µ, τ 2). Notice that there are three
fixed parameters for which we need to specify prior distributions: µ, τ 2, and σ2. For convenience, our priors
will be semiconjugate priors:

σ2 ∼ inverse-gamma(ν0/2, σ20ν0/2), 1/σ2 ∼ gamma(ν0/2, σ20ν0/2)
τ 2 ∼ inverse-gamma(η0/2, τ 20 η0/2), 1/τ 2 ∼ gamma(η0/2, τ 20 η0/2)
µ2 ∼ N (µ0, γ

2
0)
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Figure 1: A graphical representation of the basic hierarchical normal model.

8.3.1 Posterior inference

Intuition

We have samples from m groups {y1, . . . ,ym}. The unknown quantities: {θ1, . . . , θm}, σ2, (µ, τ 2). Joint
posterior inference for these parameters can be made by constructing a Gibbs sampler that approximates the
posterior distribution, and our task is to construct and sample from it:

p(θ1, . . . , θm, µ, τ
2, σ2 | y1, . . . ,ym)

Obtaining the full conditional for a single parameter is fairly straightforward by simply writing the entire joint
posterior but then treating the other parameters as constants that can be discarded via proportionality.

To obtain the full joint posterior we will take use key independence assumptions between the parameters
of our model. For example, conditionally on {θ1, . . . , θm, µ, τ 2, σ2}, the random variables Y1,j, . . . , Ynj ,j are
independent with a distribution that depends only on θj and σ2 and not on µ or τ 2. It is helpful to think about
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this fact in terms of the diagram in Figure1: The existence of a path from (µ, τ 2) to each Yj indicates that while
(µ, τ 2) provides information about Yj, it only does so indirectly through θj, which separates the two quantities
in the graph. Thus we have:

p(θ1, . . . , θm, µ, τ
2, σ2 | y1, . . . ,ym)

∝ p(θ1, . . . , θm, µ, τ
2, σ2)× p(y1, . . . ,ym | θ1, . . . , θm, µ, τ 2, σ2) Bayes’ rule

= p(µ, τ 2, σ2)× p(θ1, . . . , θm | µ, τ 2, σ2)× p(y1, . . . ,ym | θ1, . . . , θm, µ, τ 2, σ2) Chain rule
= p(µ)p(τ 2)p(σ2)× p(θ1, . . . , θm | µ, τ 2)× p(y1, . . . ,ym | θ1, . . . , θm, σ2) Indepent

= p(µ)p(τ 2)p(σ2)×

[
m∏
j=1

p(θj | µ, τ 2)

]
×

[
m∏
j=1

p(yj | θj, σ2)

]
de Finetti

= p(µ)p(τ 2)p(σ2)×

[
m∏
j=1

p(θj | µ, τ 2)

]
×

[
m∏
j=1

(
nj∏
i=1

p(yi,j | θj, σ2)

)]
de Finetti 2x

(8.1)

Full conditional distributions

1. Full conditional distributions of µ and τ 2

As a function of µ and τ 2, the term in Eq.8.1 is proportional to

p(µ)p(τ 2)
m∏
j=1

p(θj|µ, τ),

so the full conditional distributions of µ and τ 2 are also proportional to this quantity. Take the full posterior
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and discard all terms that don’t depend on µ (or τ 2):

p(µ|θ1, . . . , θm, τ 2, σ2,y1, . . . ,ym) ∝ p(µ)
∏

p(θj|µ, τ 2)

p(τ 2|θ1, . . . , θm, µ, σ2,y1, . . . ,ym) ∝ p(τ 2)
∏

p(θj|µ, τ 2).

which in this case looks exactly like a standard one-sample Normal posterior from Chapter 6, so we
borrow that result and replace the relevant variables from our priors. We can do this similarly for the other
parameters.

2. Full conditional distributions of θj
Collecting the terms in Eq.8.1 that depend on θj shows that the full conditional distribution of θj must be
proportional to

p(θj|µ, τ 2, σ2,y1, . . . ,ym) ∝ p(θj|µ, τ 2)
nj∏
i=1

p(yi,j|θj, σ2).

This says that, conditional on {µ, τ 2, σ2,yj}, θj must be conditionally independent of the other θ’s as well
as independent of the data from groups other than j. Again, it is helpful to refer to Figure 1: While there is
a path from each θj to every other θk, the paths go through (µ, τ 2) or σ2. We can think of this as meaning
that the θ’s contribute no information about each other beyond that contained in µ, τ 2 and σ2.

3. Full conditional distributions of σ2

σ2 is conditionally independent of {µ, τ 2} given {y1, . . . ,ym, θ1, . . . , θm, }. The derivation of the full
conditional of σ2 is similar to that in the one-sample normal model, except now we have information about
σ2 from m separate groups:
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p(σ2|θ1, . . . , θm,y1, . . . ,ym) ∝ p(σ2)
m∏
j=1

nj∏
i=1

p(yi,j|θj, σ2)

∝ (σ2)−ν0/2+1e−
ν0σ

2
0

2σ2 (σ2)−
∑

nj/2e−
∑∑

(yi,j−θj)
2

2σ2

Note that
∑∑

(yi,j−θj)2 is the sum of squared residuals across all groups, conditional on the within-group
means, and so the conditional distribution concentrates probability around a pooled-sample estimate of the
variance.

{µ|θ1, . . . , θm, τ 2} ∼ normal
(
mθ̄/τ 2 + µ0/γ

2
0

m/τ 2 + 1/γ20
, [m/τ 2 + 1/γ20 ]

−1

)
.

Quantities
σ2 ∼ inverse-gamma(ν0/2, σ20ν0/2)
τ 2 ∼ inverse-gamma(η0/2, τ 20 η0/2)
µ2 ∼ N (µ0, γ

2
0)
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Applying the results of Chapter 6 with the appropriate symbolic replacements, the full conditionals are

{µ | θ1, . . . , θm, τ 2} ∼ N
(
mθ̄/τ 2 + µ0/γ

2
0

m/τ 2 + 1/γ20
,
[
m/τ 2 + 1/γ20

]−1
)

{τ 2 | θ1, . . . , θm, µ} ∼ inverse-gamma

(
η0 +m

2
,
η0τ

2
0 +

∑m
j=1(θj − µ)2

2

)
or

{1/τ 2|θ1, . . . , θm, µ} ∼ gamma
(
η0 +m

2
,
η0τ

2
0 +

∑
(θj − µ)2

2

)
{θj | y1,j, . . . , ynj ,j, σ

2} ∼ N
(
nj ȳj/σ

2 + 1/τ 2

nj/σ2 + 1/τ 2
,
[
nj/σ

2 + 1/τ 2
]−1
)

{σ2 | θ,y1, . . . ,yn} ∼ inverse-gamma

(
1

2

[
ν0 +

m∑
j=1

nj

]
,
1

2

[
ν0σ

2
0 +

m∑
j=1

(
nj∑
i=1

(yi,j − θ)2

)])
or

{1/σ2|θ,y1, . . . ,yn} ∼ gamma(
1

2
[ν0 +

m∑
j=1

nj],
1

2
[ν0σ

2
0 +

m∑
j=1

nj∑
i=1

(yi,j − θj)
2]).

It’s worth briefly discussing what these values represent. The full conditionals for µ and τ 2 look like standard
normal posteriors. Similarly, the full conditional for θj looks like a normal posterior dependent only on the
specific subgroup yj and the common variance σ2. Lastly (and most interestingly), notice that the posterior
for σ2 looks like a standard inverse gamma posterior which depends on

∑∑
(yi,j − θ)2 which is the pooled

variance across all groups (see also
∑
nj).
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8.4 Example: Math scores in U.S. public schools

8.4.1 Prior distributions and posterior approximation

In this case, we need to specify the following priors:

σ2 ∼ inverse-gamma(ν0/2, σ20ν0/2)

If we know the math exam was designed to give a nationwide variance of 100, we can set the within-school
variance to 100. This is probably an overestimate since the within-school variance should be less than the
nationwide estimate. Regardless, we set σ20 = 100, ν0 = 1 to weakly concentrate the prior around 100.

τ 2 ∼ inverse-gamma(η0/2, τ 20 η0/2)

Similarly, we set τ 20 = 100, η0 = 1.
µ2 ∼ N (µ0, γ

2
0)

Since the mean over all schools should be 50, we set µ0 = 50, γ20 = 25, so that 95% of the probability of our
prior is in (40, 60).

Gibbs sampling

Now we sample parameters {θ(s)1 , . . . , θ
(s)
m , µ(s), τ 2(s), σ2(s)}, there’s a key point about Gibbs sampling that

must be emphasized: the order in which we sample the new parameters doesn’t matter, but each parameter
must be updated according to the most current values of the other parameters: If we have sampled µ(s+1), the
sample of τ (s+1) must be dependent on µ(s+1), NOT µ(s). This ensures the Markov chain property.
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Given a current state of the unknowns {θ(s)1 , . . . , θ
(s)
m , µ(s), τ 2(s), σ2(s)}, a new state is generated as follows:

1. Sample µ(s+1) ∼ p(µ|θ(s)1 , . . . , θ
(s)
m , τ 2(s))

2. Sample τ 2(s+1) ∼ p(τ 2|θ(s)1 , . . . , θ
(s)
m , µ(s+1))

3. Sample σ2(s+1) ∼ p(σ2|θ(s)1 , . . . , θ
(s)
m ,y1, . . . ,ym)

4. for each j ∈ {1, . . . ,m}, sample θ(s+1)
j ∼ p(θj | µ(s+1), τ 2(s+1), σ2(s+1),yj)

MCMC diagnostics

Before we make inference using these MCMC samples, the first thing we need to do is to see if there are
any indications that the chain is not stationary, i.e. if the simulated parameter values are moving in a consistent
direction.

Methods:

Traceplots, or plots of the parameter values versus iteration number (be difficult to read when the number
of samples is large)
Standard practice: plot only a subsequence of MCMC samples, such as every 100th sample
Produce boxplots of sequential groups of samples (If stationarity has been achieved, then the distribution
of samples in any one boxplot should be the same as that in any other)
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8.4.2 Posterior summaries and shrinkage

Notice from the full conditional of θj above that the expected value of θj is a weighted average of ȳj and µ:

E(θj | yj, µ, τ
2, σ2) =

ȳjnj/σ
2 + µ/τ 2

nj/σ2 + 1/τ 2

=
nj/σ

2

nj/σ2 + 1/τ 2
ȳj +

1/τ 2

nj/σ2 + 1/τ 2
µ

which is specifically weighted by the sample size nj. Since we assume that there is some common mean µ,
our estimate of θj gets pulled slightly towards that common parameter µ- less so for high nj. In other words,
θj is pulled a bit from ȳj towards µ by an amount depending on nj. This demonstrates the phenomenon of
shrinkage, where information is shared across groups in this hierarchical model. Again, for high nj, however,
the effect of this shrinkage is negligible: Groups with low sample sizes get shrunk the most, whereas groups
with large sample sizes hardly get shrunk at all. This makes sense: The larger the sample size for a group, the
more information we have for that group and the less information we need to “borrow” from the rest of the
population.
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8.5 Hierarchical modeling of means and variances

The previous model assumed common variance within groups σ2. This is actually fairly common, perhaps
less because of empirical justification for assuming common within-group variance than lack of interest in the
variance of the groups, or the mean parameters being of greater interest.

But of course, the inaccuracy of this assumption could result in errors in analysis. It could lead to
improper pooling of information, or to the shrinkage of group-specific parameters by inappropriate amounts.
It’s fairly straightforward to simply add another hierarchical layer for the variance too, and jointly estimate the
group-specific means and variances, as well as the common mean and variance parameters.

To implement this, let θj depend on yj and (new!) a group j-specific σ2j . Thus, the likelihood (sample
function):

Y1,j, . . . , Ynj ,j ∼ i.i.d. normal(θj, σ2j ),

and the full conditional distribution is

θj | yj, σ
2
j ∼ N

(
nj ȳj/σ

2
j + 1/τ 2

nj/σ2j + 1/τ 2
,
[
nj/σ

2
j + 1/τ 2

]−1

)

Similarly, above we had a rather special case of the full conditional of σ2. Since there was one common
σ2, the posterior was based on a combination of the prior precision and the pooled sample variance. Now let’s
assume that we have a separate σ2j for each group:

σ21, . . . , σ
2
m ∼ i.i.d. Gamma(ν0/2, σ20ν0/2). (8.2)
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Include individual σ2j , re-derive the full conditional for σ2j results in full conditional distributions that look just
like the one-parameter case for variance (and the corresponding θj conditionals for the means):

{σ2j |y1,j, . . . , ynj ,j, θj} = {σ2j | yj, θj} ∼ inverse-gamma

(
[ν0 + nj]/2,

[
ν0σ

2
0 +

nj∑
i=1

(yi,j − θj)
2

]
/2

)

Discuss: If ν0 and σ20 are fixed in advance at some particular values: we may obtain p(σ2m | σ21, . . . , σ2m−1) =

p(σ2m), so the information we may have about σ2m | σ21, . . . , σ2m−1 is not used to help us estimate σ2m. This seems
inefficient. Thus, we can treat ν0 and σ20 as parameters to be estimated, in which case (Eq.8.2) is properly
thought of as a sampling model for across-group heterogeneity in population variances, and not as a prior
distribution. Putting this together with our model for heterogeneity in population means gives a hierarchical
model for both means and variances, which is depicted graphically in Figure2.

Figure 2: A graphical representation of the hierarchical normal model with heterogeneous means and variances.
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The unknown parameters to be estimated include: {(θ1, σ21), . . . , (θm, σ2m)} representing the within-group
sampling distributions, {µ, τ 2} representing across-group heterogeneity in means and {ν0, σ20} representing
across-group heterogeneity in variances.

As before, the joint posterior distribution for all of these parameters can be approximated by iteratively
sampling each parameter from its full conditional distribution given the others.

full conditional distributions for µ and τ 2 are unchanged from the previous section
full conditional distributions of θj and σ2j are given above
specify the prior distributions for ν0 and σ20, and obtain full conditional distributions of ν0 and σ20

A conjugate class of prior densities for σ20 are the gamma densities, i.e., σ20 ∼ gamma(a, b). Thus, the
posterior is:

σ20 | σ21, . . . , σ2m, ν0 ∼ gamma

(
a+

1

2
mν0, b+

1

2

m∑
j=1

(1/σ2j )

)
A simple conjugate prior for ν0 does not exist, but if we restrict ν0 to be a whole number, then it is easy
to sample from its full conditional distribution:
For example, if we let the prior on ν0 be the geometric distribution on {1, 2, . . .} so that p(ν0) ∝ e−αν0,
then the full conditional distribution of ν0 is proportional to

p(ν0 | σ20, . . . , σ2m) ∝ p(ν0)× p(σ21, . . . , σ
2
m | ν0, σ20)

∝
(
(σ20ν0/2)

ν0/2

Γ(ν0/2)

)m
(

m∏
j=1

1

σ2j

)ν0/2−1

× exp

(
−ν0

(
α +

1

2
σ20

m∑
j=1

1

σ2j

))
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8.6 Discussion and further references

Lindley and Smith (1972) laid the foundation for Bayesian hierarchical modeling, although the idea of
shrinking the estimates of the individual group means towards an across-group mean goes back at least to
Kelley (1927) in the context of educational testing. In the statistical literature, the benefits of this type of
estimation are referred to as the “Stein effect” (Stein, 1956, 1981). Estimators of this type generally take the
form θ̂j = wj ȳj + (1 − wj)ȳ, where ȳ is an average over all groups and the wj’s depend on nj, σ2 and τ 2.
So-called empirical Bayes procedures obtain estimates of σ2 and τ 2 from the data, then plug these values into
the formula for θ̂j (Efron and Morris, 1973; Casella, 1985). Such procedures often yield estimates of the θj’s
that are nearly equivalent to those from Bayesian procedures, but ignore uncertainty in the values of σ2 and τ 2.
For a detailed treatment of empirical Bayes methods, see Carlin and Louis (1996).

Terminology for hierarchical models is inconsistent in the literature. For the simple hierarchical model
yi,j = θj + ϵi,j, θj = µ + γj, the θj’s (or γj’s) may be referred to as either “fixed effects” or “random effects,”
usually depending on how they are estimated. The distribution of the θj’s is unfortunately often referred to
as a prior distribution, which mischaracterizes Bayesian inference and renders the distinction between prior
information and population distribution somewhat meaningless.
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9 Linear regression

Linear regression modeling is an extremely powerful data analysis tool, useful for a variety of inferential
tasks such as prediction, parameter estimation and data description. One difficult aspect of regression modeling
is deciding which explanatory variables to include in a model. This variable selection problem has a natural
Bayesian solution: Any collection of models having different sets of regressors can be compared via their
Bayes factors. When the number of possible regressors is small, this allows us to assign a posterior probability
to each regression model. When the number of regressors is large, the space of models can be explored with a
Gibbs sampling algorithm.

9.1 The linear regression model

Regression modeling is concerned with describing how the sampling distribution of one random variable
Y varies with another variable or set of variables x = (x1, . . . , xp). Specifically, a regression model postulates
a form for p(y|x), the conditional distribution of Y given x. Estimation of p(y|x) is made using data y1, . . . , yn
that are gathered under a variety of conditions x1, . . . , xn.

A linear regression model is a particular type of smoothly changing model for p(y|x) that specifies that the
conditional expectation E[Y |x] has a form that is linear in a set of parameters:∫

yp(y|x)dy = E[Y |x] = β1x1 + · · ·+ βpxp = βTx.

Thus, actually, Yi = β1xi,1 + β2xi,2 + β3xi,3 + β4xi,4 + ϵi.
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The normal linear regression model specifies that, (1) E[Y | x] being linear (2)the sampling variability
around the mean is i.i.d. from a normal distribution:

Yi = βTxi + ϵi

ϵ1, . . . , ϵn ∼ i.i.d. normal(0, σ2)

This model provides a complete specification of the joint probability density of observed data y1, . . . , yn
conditional upon x1, . . .xn and values of β and σ2:

p(y1, . . . , yn|x1, . . .xn, β, σ
2) =

n∏
i=1

p(yi|xi,β, σ
2) (9.1)

= (2πσ2)−n/2 exp{− 1

2σ2

n∑
i=1

(yi − βTxi)
2}. (9.2)

Another way to write the normal regression model is that:

{y|X, β, σ2} ∼ multivariate normal (Xβ, σ2I),

where I is the p× p identity matrix and and

Xβ =


x1 →
x2
...

xn →


β1...
βp

 =

β1x1,1 + · · ·+ βpx1,p
...

β1xn,1 + · · ·+ βpxn,p

 =

E[Y1|β, x1]
...

E[Yn|β, xn]

 .
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The density Eq.9.2 depends on β through the residuals yi − βTxi. Given the observed data, the term in the
exponent is maximized when the sum of squared residuals, SSR(β) =

∑n
i=1(yi−βTxi)

2 is minimized. Thus,
rewrite:

SSR(β) =
n∑

i=1

(yi − βTxi)
2 = (y −Xβ)T (y −Xβ) = yTy − 2βTXTy + βTXTXβ.

d

dβ
SSR(β) =

d

dβ

(
yTy − 2βTXTy + βTXTXβ

)
= −2XTy + 2XTXβ, therefore

d

dβ
SSR(β) = 0 ⇔ −2XTy + 2XTXβ = 0

⇔ XTXβ = XTy

⇔ β = (XTX)−1XTy.

β̂ols = (XTX)−1XTy is called the “ordinary least squares” (OLS) estimate of β, as it provides the value of β
that minimizes the sum of squared residuals.

9.2 Bayesian estimation for a regression model

We begin with a simple semiconjugate prior distribution for β and σ2 to be used when there is information
available about the parameters.
In situations where prior information is unavailable or difficult to quantify, an alternative “default” class
of prior distributions is given.
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9.2.1 A semiconjugate prior distribution

The likelihood function, or the sampling density of the data (Eq.9.2), is

p(y|X,β, σ2) ∝ exp{− 1

2σ2
SSR(β)}

= exp{− 1

2σ2
[yTy − 2βTXTy + βTXTXβ]}.

First, a multivariate normal prior distribution for β is conjugate, then:

β ∼ N (β0,Σ0)

p(β|y,X, σ2) ∝ p(y|X,β, σ2)× p(β)

∝ exp{−1

2
(−2βTXTy/σ2 + βTXTXβ/σ2)− 1

2
(−2βTΣ−1

0 β0 + βTΣ−1
0 β)}

= exp{βT (Σ−1
0 β0 +XTy/σ2)− 1

2
βT (Σ−1

0 +XTX/σ2)β}.

Referring Chapter 7, it is easy to recognize that this as being proportional to a multivariate normal density, with

Var[β|y,X, σ2] = (Σ−1
0 +XTX/σ2)−1 (9.3)

E[β|y,X, σ2] = (Σ−1
0 +XTX/σ2)−1(Σ−1

0 β0 +XTy/σ2) (9.4)

If Σ−1
0 small: E[β|y,X, σ2] approximately equal to (XTX)−1XTy, the least squares estimate.

Ifσ2 large (measurement precision is small): E[β|y,X, σ2] approximately equal toβ0, the prior expectation.
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Second, a inverse-gamma distribution for σ2 is conjugate. γ = 1/σ2, the measurement precision, then:

γ ∼ gamma(ν0/2, νσ2/2)

p(γ|y,X,β) ∝ p(γ)p(y|X,β, γ)

∝
[
γν0/2−1 exp(−γ × ν0σ

2
0/2)

]
×
[
γn/2 exp(−γ × SSR(β)/2)

]
= γ(ν0+n)/2−1 exp(−γ[ν0σ20 + SSR(β)]/2),

{σ2|y,X,β} ∼ inverse-gamma([ν0 + n]/2, [ν0σ
2
0 + SSR(β)]/2).

Then, constructing a Gibbs sampler to approximate the joint posterior distribution p(β, σ2|y,X) is then
straightforward: Given current values {β(s), σ2(s)}, new values can be generated by

1. updating β

a) computeV = Var[β|y,X, σ2(s)] andm = E[β|y,X, σ2(s)]
b) sample β(s+1) ∼ multivariate normal(m,V)

2. updating σ2

a) compute SSR(β(s+1))

b) sample σ2(s+1) ∼ inverse− gamma([ν0 + n]/2, [ν0σ
2
0 + SSR(β(s+1))]/2)
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9.2.2 Default and weakly informative prior distributions

A Bayesian analysis of a regression model requires specification of the prior parameters (β0,Σ0) and
(ν0, σ

2
0). Finding values of these parameters that represent actual prior information can be difficult.

The task of constructing an informative prior distribution only gets harder as the number of regressors
increases, as the number of prior correlation parameters is

(
p
2

)
, which increases quadratically in p.

One idea is that, if the prior distribution is not going to represent real prior information about the parameters,
then it should be as minimally informative as possible. The resulting posterior distribution would then represent
the posterior information of someone who began with little knowledge of the population being studied. Such
an analysis would give a “more objective” result than using an informative prior distribution, especially one
that did not actually represent real prior information.

1. One type of weakly informative prior is the unit information prior. A unit information prior is one that
contains the same amount of information as that would be contained in only a single observation.

For example, the precision of β̂ols is its inverse variance, or (XTX)/(σ2). Since this can be viewed as
the amount of information in n observations, the amount of information in one observation should be
“one nth” as much, i.e.(XTX)/(nσ2). The unit information prior thus sets Σ−1

0 = (XTX)/(nσ2).
If setting β0 = β̂ols thus centering the prior distribution of β around the OLS estimate: Such a
distribution cannot be strictly considered a real prior distribution, as it requires knowledge of y to be
constructed. However, it only uses a small amount of the information in y, and can be loosely thought
of as the prior distribution of a person with unbiased but weak prior information.
In a similar way, the prior distribution of σ2 can be weakly centered around σ̂2 ols by taking ν0 = 1

and σ20 = σ̂2ols.
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2. g-prior
Idea: the parameter estimation should be invariant to changes in the scale of the regressors.
Suppose X is a given set of regressors and X̃ = XH for some p× p matrix H. If we obtain the posterior
distribution of β from y and X, and the posterior distribution of β̃ from y and X̃ , then, according to this
principle of invariance, the posterior distributions of β and Hβ̃ should be the same.
This condition will be met if β0 = 0 and Σ0 = k(XTX)−1 for any positive value k. A popular specification
of k is to relate it to the error variance σ2 , so that k = gσ2 for some positive value g.
These choices of prior parameters result in a version of the so-called “g-prior”.
Under this invariant g-prior the conditional distribution of β given (y,X, σ2) is still multivariate normal,
but Eqs.9.3 and 9.4 reduce to the following simpler forms:

Var[β|y,X, σ2] = [XTX/(gσ2) +XTX/σ2]−1 =
g

g + 1
σ2(XTX)−1 (9.5)

E[β|y,X, σ2] = [XTX/(gσ2) +XTX/σ2]−1XTy/σ2 =
g

g + 1
(XTX)−1XTy. (9.6)

Parameter estimation under the g-prior is simplified as well: It turns out that, under this prior distribution,
p(σ2 | y,X) is an inverse-gamma distribution, which means that we can directly sample (σ2,β) from their
posterior distribution by first sampling from p(σ2 | y,X) and then from p(β | σ2,y,X).

Derivation of p(σ2|y,X)

The marginal posterior density of σ2 is proportional to p(σ2) × p(y|X, σ2). Using the rules of marginal
probability, the latter term in this product can be expressed as the following integral:
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p(y|X, σ2) =
∫
p(y|X,β, σ2)p(β|X, σ2) dβ.

Writing out the two densities inside the integral, we have

p(y|X,β, σ2)p(β|X, σ2) = (2πσ2)−n/2 exp[− 1

2σ2
(y −Xβ)T (y −Xβ)]×

|2πgσ2(XTX)−1|−1 exp[− 1

2gσ2
βTXTXβ].

(9.7)

Combining the terms in the exponents gives

− 1

2σ2
[
(y −Xβ)T (y −Xβ) + βTXTXβ/g

]
= − 1

2σ2
[
yTy − 2yTXβ + βTXTXβ(1 + 1/g)

]
= − 1

2σ2
yTy − 1

2
(β −m)TV−1(β −m) +

1

2
mTV−1m,

where V =
g

g + 1
σ2(XTX)−1 and m =

g

g + 1
(XTX)−1XTy.

This means that we can write Eq.9.7 as[
(2πσ2)−n/2 exp(− 1

2σ2
yTy)

]
×
[
(1 + g)−p/2 exp(

1

2
mTV−1m)

]
×[

|2πV|−1/2 exp[−1

2
(β −m)TV−1(β −m)]

]
.
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The third term in the product is the only term that depends on β. This term is exactly the multivariate normal
density with mean m and variance V, which as a probability density must integrate to 1. This means that if
we integrate the whole thing with respect to β we are left with only the first two terms:

p(y|X, σ2) =
∫
p(y|β,X)p(β|X, σ2)dβ

=

[
(2πσ2)−n/2 exp(− 1

2σ2
yTy)

]
×
[
(1 + g)−p/2 exp(

1

2
mTV−1m)

]
× 1,

(9.8)

which, after combining the terms in the exponents, is

p(y|X, σ2) = (2π)−n/2(1 + g)−p/2(σ2)−n/2 exp(− 1

2σ2
SSRg),

where SSRg is defined as

SSRg = yTy −mTV−1m = yT (I− g

g + 1
X(XTX)−1XT )y.

As g → ∞, SSRg decreases to SSRols =
∑

(yi− β̂olsxi)
2. The effect of g is that it shrinks down the magnitude

of the regression coefficients and can prevent overfitting of the data.

The last step in identifying p(σ2 | y,X) is to multiply p(y | X, σ2) by the prior distribution. Letti
γ = 1/σ2 ∼ gamma(ν0/2, ν0σ20/2), we have
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p(γ|y,X) ∝ p(γ)p(y|X, γ)

∝
[
γν0/2−1 exp(−γ × ν0σ

2
0/2)

]
×
[
γn/2 exp(−γ × SSRg/2)

]
= γ(ν0+n)/2−1 exp[−γ × (ν0σ

2
0 + SSRg)/2]

∝ dgamma(γ, [ν0 + n]/2, [ν0σ
2
0 + SSRg]/2),

and {σ2|y,X} ∼ inverse-gamma([ν0 + n]/2, [ν0σ
2
0 + SSRg]/2).

Under g-prior distribution, p(σ2 | y,X) and p(β | y,X, σ2) are inverse-gamma and multivariate normal
distributions respectively. Since we can sample from both of these distributions, samples from the joint
posterior distribution p(σ2,β | y,X) can be made with Monte Carlo approximation, and Gibbs sampling is
unnecessary.

A sample value of (σ2,β) from p(σ2,β | y,X) can be made as follows:

1. sample 1/σ2 ∼ gamma([ν0 + n]/2, [ν0σ
2
0 + SSRg]/2)

2. sample β ∼ multivariate normal( g
g+1β̂ols,

g
g+1σ

2[XTX]−1)
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9.3 Model selection

We should include in our regression model only those variables for which there is substantial evidence of
an association with y.

Perhaps our predictions could be improved by removing from the regression model those variables that show
little evidence of being nonzero. By doing so, we hope to remove from the predictive model any regressors that
have spurious associations to Y (i.e. those associations specific only to the training data), leaving only those
regressors that would have associations for any group of subjects (i.e. both the training and test data).

One standard way to assess the evidence that the true value of a regression coefficient βj is not zero is with a
t-statistic, which is obtained by dividing the OLS estimate β̂j by its standard error, so tj = β̂j/[σ̂

2(XTX)−1
j,j ]

1/2.

A procedure, in which a potentially large set of regressors is reduced to a smaller set, are called model
selection procedures. Consider the following procedure:

1. Obtain the estimator β̂ols = (XTX)−1XTy and its t-statistics.
2. If there are any regressors j such that |tj| < tcutoff

find the regressor jmin having the smallest value of |tj| and remove column jmin from X.
return to Step 1

3. If |tj| > tcutoff for all variables j remaining in the model, then stop.

A standard choice for tcutoff is an upper quantile of a t or standard normal distribution.
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9.3.1 Bayesian model comparison

The Bayesian solution to the model selection problem is conceptually straightforward:

If we believe that many of the regression coefficients are potentially equal to zero, then we simply come
up with a prior distribution that reflects this possibility. This can be accomplished by specifying that each
regression coefficient has some non-zero probability of being exactly zero.

A convenient way to represent this is to write the regression coefficient for variable j as βj = zj × bj ,
where zj ∈ {0, 1} and bj is some real number (The zj’s indicate which regression coefficients are non-zero).
With this parameterization, our regression equation becomes:

yi = z1b1xi,1 + · · ·+ zpbpxi,p + ϵi.

Each value of z = (z1, . . . , zp) corresponds to a different model. (Eg: z = (1, 0, 1, 0) and z = (1, 1, 1, 0)

correspond to different models.) With this parameterization, choosing which variables to include in a regression
model is equivalent to choosing which zj’s are 0 and which are 1.

Bayesian model selection proceeds by obtaining a posterior distribution for z. Of course, doing so requires
a joint prior distribution on {z,β, σ2}.

It turns out that a version of the g-prior allows us to evaluate p(y|X, z) for each possible model z.

Given a prior distribution p(z) over models, this allows us to compute a posterior probability for each
regression model:

p(z|y,X) =
p(z)p(y|X, z)∑
z̃ p(z̃)p(y|X, z̃)

.

129



Alternatively, we can compare the evidence for any two models with the posterior odds:

odds(za, zb|y,X) =
p(za|y,X)

p(zb|y,X)
=
p(za)

p(zb)
× p(y|X, za)
p(y|X, zb)

posterior odds = prior odds × “Bayes factor”
(9.9)

The Bayes factor can be interpreted as how much the data favor model za over model zb.

Computing the marginal probability

In order to obtain a posterior distribution over models, we will have to compute p(y|X, z) for each model
z under consideration. The marginal probability is obtained from the integral

p(y|X, z) =
∫ ∫

p(y,β, σ2|X, z)dβdσ2

=

∫ ∫
p(y|β,X)p(β|X, z, σ2)p(σ2)dβdσ2.

(9.10)

Using a version of the g-prior distribution for β, we will be able to compute this integral without needing much
calculus. For any given z with pz non-zero entries, let Xz be the n× pz matrix corresponding to the variables
j for which zj = 1, and similarly let βz be the pz × 1 vector consisting of the entries of β for which zj = 1.

Our modified g-prior distribution for β is that βj = 0 for j’s such that zj = 0, and that

{βz|Xz, σ
2} ∼ multivariate normal(0, gσ2[XT

z Xz]
−1).
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Intergrate Eq.9.10 w.r.t β first, we have:

p(y|X, z) =
∫ (∫

p(y|X, z, σ2,β)p(β|X, z, σ2)dβ
)
p(σ2)dσ2

=

∫
p(y|X, z, σ2)p(σ2)dσ2.

We can obtain the calculation about p(y|X, z, σ2) in Eq.9.8. Then, define γ = 1/σ2, let p(γ) be the gamma
density with parameters (ν0/2, ν0σ20/2), we can show that conditional density of (y, γ) given (X, z) is

p(y|X, z) = p(y|X, z, γ)× p(γ) = (2π)−n/2(1 + g)−pz/2 ×
⌊
γn/2e−γSSRz

g/2
⌋
×

(ν0σ
2
0/2)

ν0/2Γ(ν0/2)
−1
[
γν0/2−1e−γν0σ

2
0/2
]
,

(9.11)

where SSRz
g is as before, based on the regressor matrix Xz:

SSRz
g = yT (I− g

g + 1
Xz(X

T
z Xz)

−1Xz)y.

The part of Eq.9.11 that depends on γ is proportional to a gamma density, but in this case the normalizing
constant is the part that we need:

γ(ν0+n)/2−1 exp[−γ × (ν0σ
2
0 + SSRz

g)/2] =

Γ([ν0 + n]/2)

([ν0σ20 + SSRz
g]/2)

(ν0+n)/2−1
× dgamma[γ, (ν0 + n)/2, (ν0σ

2
0 + SSRz

g)/2]
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Thus we can have:

p(y|X, z) = π−n/2Γ([ν0 + n]/2)

Γ(ν0/2)
(1 + g)−pz/2

(ν0σ
2
0)

ν0/2

(ν0σ20 + SSRz
g)

(ν0+n)/2
.

Suppose g = n and use the unit information prior for p(σ2) for each model z, so that ν0 = 1 for all z, but
σ20 is the estimated residual variance under the least squares estimate for model z.

Recall Eq.9.9. In this case, the ratio of the probabilities under any two models za and zb is

p(y|X, za)
p(y|X, zb)

= (1 + n)(pzb−pza)/2

(
s2za
s2zb

)1/2

×

(
s2zb + SSRzb

g

s2za + SSRza
g

)(n+1)/2

.

Notice that the ratio of the marginal probabilities is essentially a balance between model complexity and
goodness of fit: A large value of pzb compared to pza penalizes model zb, although a large value of SSRza

g

compared to SSRzb
g penalizes model za.

pzb ↑, more variables, more complexity, large p(y|X,za)
p(y|X,zb)

, za✓
SSRza

g ↑, less goodness of fit, small p(y|X,za)
p(y|X,zb)

, zb✓

9.3.2 Gibbs sampling and model averaging

If we allow each of the p regression coefficients to be either zero or non-zero, then there are 2p different
models to consider: impractical for us to compute the marginal probability of each model.
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Our data analysis goals become more modest: For example, we may be content with a decent estimate of
β from which we can make predictions, or a list of relatively high-probability models. These items can be
obtained with a Markov chain which searches through the space of models for values of z with high posterior
probability. This can be done with a Gibbs sampler in which we iteratively sample each zj from its full
conditional distribution.

Specifically, given a current value z = (z1, . . . , zp), a new value of zj is generated by sampling from
p(zj|y,X, z−j). The full conditional probability that zj is 1 can be written as oj/(1 + oj), where oj is the
conditional odds that zj is 1, given by

oj =
Pr(zj = 1|y,X, z−j)

Pr(zj = 0|y,X, z−j)
=

Pr(zj = 1)

Pr(zj = 0)
× p(y|X, z−j, zj = 1)

p(y|X, z−j, zj = 0)
.

We also want to obtain posterior samples of β and σ2. Using the previous results, these parameters can be
sampled directly from their conditional distributions given z, y and X:

For each z in our MCMC sample,we can construct the matrix Xz which consists of only those columns
j corresponding to non-zero values of zj. Using this matrix of regressors, sample σ2 from p(σ2 | X,y, z)
(inverse-gamma) and β from p(β | X,y, z, σ2) (multivariate normal). Our Gibbs sampling scheme therefore
looks Something like the following:

z(s) −→ σ2(s) −→ β(s)

↓
z(s+1) −→ σ2(s+1) −→ β(s+1)
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Generating values of {z(s+1), σ(s+1),β(s+1)} from z(s) is achieved with the following steps:

1. Set z = z(s);

2. For j ∈ {1, . . . , p} in random order, replace zj with a sample from p(zj|z−j,y,X)

3. Set z(s+1) = z;

4. Sample σ2(s+1) ∼ p(σ2|z(s+1), y,X)

5. Sample β(s+1) ∼ p(β|z(s+1), σ2(s+1),y,X)

Note that the entries of z(s+1) are not sampled from their full conditional distributions given σ2(s) and β(s).
This is not a problem: The Gibbs sampler for z ensures that the distribution of z(s) converges to the target
posterior distribution p(z|y,X). Since (σ2(s),β(s)) are direct samples from p(σ2,β|z(s),y,X), the distribution
of (σ2(s),β(s)) converges to p(σ2,β|y,X).

9.4 Discussion and further references

Many have argued that in most situations none of the regression models under consideration are actually
true. In this situation, Bayesian model selection can still be meaningful in a decision-theoretic sense, where the
task is to select the model with the best predictive performance. In this case, model selection proceeds using a
modified Bayes factor that is similar to a cross-validation criterion.
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10 Nonconjugate priors and Metropolis-Hastings algorithms

We present the Metropolis-Hastings algorithm as a generic method of approximating the posterior distri-
bution corresponding to any combination of prior distribution and sampling model.

Two examples: (1) Poisson regression, a type of generalized linear model. (2) A longitudinal regression
model in which the observations are correlated over time

10.1 Generalized linear models

We can use an example to understand the Generalized Linear models:

For Song sparrow, denote Y , the number of offspring conditional, and x, their ages. A simple probability
model would be a Poisson model:

{Y | x} ∼ Poisson(θx)

Then we can estimate θx for each age group. But the number of birds of each age is small. To add stability to
the estimation we will assume that the mean number of offspring is a smooth function of age. We will want to
allow this function to be quadratic. One possibility would be to express θx as θx = β1 + β2x+ β3x

2. To make
sure θx > 0, model the log-mean of Y in terms of this regression, so that

log E[Y |x] = log θx = β1 + β2x+ β3x
2

and E[Y |x] = log θx = exp(β1 + β2x+ β3x
2).

135



Noted that we have different ages (different x). Then logE[Yi|xi] = β1 + β2xi + β3x
2
i , where xi is the age

of the sparrow i. Denote xi = (1, xi, x
2
i ) so that logE[Yi|xi] = βTxi.

Thus, the resulting model is:
{Y |x} ∼ Poisson(exp[βTx])

which is called Poisson regression model. The term βT is linear predictor, which linked to E[Y |x] via the log
function so we say this model has a log link.

The Poisson regression model is a type of generalized linear model, a model which relates a function of
the expectation to a linear predictor of the form βTx.
Another common generalized linear model is the logistic regression model for binary data. Writing
Pr(Y = 1|x) = E[Y |x] = θx, the logistic regression model parameterizes θx as

θx =
exp(βTx)

1 + exp(βTx)
, so that βTx = log

θx
1− θx

The function log θx/(1 − θx) relating the mean to the linear predictor is called the logit function, so the
logistic regression model could be described as a binary regression model with a logit link.

Although independent Monte Carlo sampling from the posterior is not available for this Poisson regression
model, the next section will show how to construct a Markov chain that can approximate p(β | X,y) for any
prior distribution p(β).
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10.2 The Metropolis algorithm

(A generic situation:) we have a sampling model Y ∼ p(y|θ) and a prior distribution p(θ). Posterior
p(θ|y) = p(θ)p(y|θ)/

∫
p(θ′)p(y|θ′)dθ′ is often hard to calculate due to the integral. If we were able to

sample from p(θ|y), then we generate θ(1), . . . , θ(S) ∼ i.i.d.p(θ|y), and can obtain Monte Carlo approxi-
mations to posterior quantities, such as E[g(θ)|y] ≈ 1

S

∑S
s=1 g(θ

(s)).

What if we cannot sample directly from p(θ|y)? Actually, in terms of approximating the posterior distribu-
tion, the critical thing is not that we have i.i.d. samples from p(θ|y) but rather that we are able to construct a
large collection of θ-values, {θ(1), . . . , θ(S)}, whose empirical distribution approximates p(θ|y).

Suppose we have a working collection {θ(1), . . . , θ(s)} to which we would like to add a new value θ(s+1).
We consider adding a value θ∗ which is nearby θ(s). If p(θ∗|y) > p(θ(s)|y), we should include θ∗ as well. If
p(θ∗|y) < p(θ(s)|y)? This comparison can be made even if we cannot compute p(θ|y)

r =
p(θ∗|y)
p(θ(s)|y)

=
p(y|θ∗)p(θ∗)

p(y)

p(y)

p(y|θ(s))p(θ(s))
=

p(y|θ∗)p(θ∗)
p(y|θ(s))p(θ(s))

. (10.1)

If r > 1:
Intuition: Since θ(s) is already in our set, we should include θ∗ as it has a higher probability than θ(s).
Procedure: Accept θ∗ into our set, i.e. set θ(s+1) = θ∗.

If r < 1:
Intuition: The relative frequency of θ in our set equal to θ∗ compared to those equal to θ(s) should be

p(θ∗|y)/p(θ(s)|y) = r . For each of θ(s), we should have only a “fraction”of an instance of a θ∗ value.
Procedure: Set θ(s+1) equal to either θ∗ or θ(s), with probability r and 1− r respectively.

137



10.2.1 Metropolis algorithm

The Metropolis algorithm proceeds by sampling a proposal value θ∗ nearby the current value θ(s) using a
symetric proposal distribution J(θ∗|θ(s)).

Symmetric: J(θb|θa) = J(θa|θb). Eg: J(θ∗|θ(s)) = uniform(θ(s)−δ, θ(s)+δ); J(θ∗|θ(s)) = normal(θ(s), δ2)
Noted that the value of the parameter δ is chosen to make the approximation algorithm run efficiently.
Give θ(s), Metropolis algorithm generates a value θ(s+1) as follows:
1. Sample θ∗ ∼ J(θ|θ(s))

2. Compute the acceptance ratio: r =
p(θ∗|y)
p(θ(s)|y)

=
p(y|θ∗)p(θ∗)
p(y|θ(s))p(θ(s))

.

3. Let

θ(s+1) =

{
θ∗ with probability min(r, 1)

θ(s) with probability 1−min(r, 1).

Accomplish Step 3: Sample u ∼uniform(0, 1), set θ(s+1) = θ∗ if u < r and θ(s+1) = θ(s) otherwise.

10.2.2 Output of the Metropolis algorithm

MA generates a dependent sequence {θ(1), θ(2), . . .} of θ-values. Since θ(s+1) depends only on θ(s), the con-
ditional distribution of θ(s+1) given {θ(1), . . . , θ(s)} also depends only on θ(s) and so the sequence {θ(1), θ(2), . . .}
is a Markov chain. Under some mild conditions:

The marginal sampling distribution of θ(s) is approximately p(θ|y) for large s.
For any given numerical value θa of θ, lim

S→∞
#{θ’s in the sequence < θa}/S = p(θ < θa|y).
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However, in practice, using either the Metropolis algorithm or the Gibbs sampler, we don’t use s→ ∞ but
follow the standard practice in MCMC approximation:

1. run algorithm until some iteration B for which it looks like the Markov chain has achieved stationarity
2. run the algorithm S more times, generating {θ(B+1), . . . , θ(B+S)}
3. discard {θ(1), . . . , θ(B)} and use the empirical distribution of {θ(B+1), . . . , θ(B+S)} to approximate p(θ|y)

The iterations up to and including B: the “burn-in” period. In which the Markov chain moves from its initial
value to a region of the parameter space that has high posterior probability.

correlation or δ

The θ-values generated from an MCMC algorithm are statistically dependent. Recall MCMC diagnostics
in Chapter 6: the higher the correlation, the longer it will take for the Markov chain to achieve stationarity.
Because the amount of information we obtain about E[θ|y] from S positively correlated samples is less than
the information we would obtain from S independent samples. The more correlated our Markov chain is, the
less information we get per iteration.

With the Metropolis algorithm the correlation can be adjusted by selecting an optimal value of δ in the
proposal distribution.

It is common practice to first select a proposal distribution by implementing several short runs of the
Metropolis algorithm under different δ-values until one is found that gives an acceptance rate roughly
between 20 and 50%. Once a reasonable δ is selected, a longer more efficient Markov chain can be run.
Modified versions of the Metropolis algorithm can be constructed that adaptively change the value of δ at
the beginning of the chain in order to automatically find a good proposal distribution.
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10.2.3 The Metropolis algorithm for Poisson regression

The prior distribution we used was that the regression coeficients were i.i.d. normal(0,100).

Given a current value β(s) and a value β∗ generated from J(β∗|β(s)),the acceptance ratio for the Metropolis
algorithm is

r =
p(β∗|X,y)
p(β(s)|X,y)

=

∏n
i=1 dpois(yi,x

T
i β

∗)∏n
i=1 dpois(yi,x

T
i β

(s))
×
∏3

j=1 dnorm(β∗
j , 0, 10)∏3

j=1 dnorm(β
(s)
j , 0, 10)

.

Then what we need is to specify the proposal distribution for θ∗. In many problems, the posterior variance
can be an efficient choice of a proposal variance. Although we do not know it before runing MA, a rough
approximation is often sufficient.

A convenient choice is a multivariate normal distribution with mean β(s). In a normal regression problem,
the posterior variance of β will be close to σ2(XTX)−1, where σ2 is the variance of Y . In our Poisson
regression, the model is that the log of Y has expectation equal to βTx, so let’s try a proposal variance of
σ̂2(XTX)−1 where σ̂2 is the sample variance of {log(y1 + 1/2), . . . , log(yn + 1/2)} (we use log(y + 1/2)

instead of logy because the latter would be −∞ if y = 0).
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10.3 Metropolis, Metropolis-Hastings and Gibbs

A Markov chain is a sequentially generated sequence {x(1), x(2), . . .} such that the mechanism that generates
a x(s+1) can depend on the value of x(s) but not on {x(s−1), x(s−2), . . . x(1)}.

The Gibbs Sampler and the Metropolis algorithm are both ways of generating Markov chains that approx-
imate a target probability distribution p0(x) for a potentially vector-valued random variable x. In Bayesian
analysis x is typically a parameter or vector of parameters and p0(x) is a posterior distribution.

These two algorithms are in fact special cases of a more general algorithm, called the Metropolis-Hastings
algorithm. Markov chains generated by the Metropolis-Hastings algorithm are able to approximate a target
probability distribution.

10.3.1 The Metropolis-Hastings algorithm

We’ll first consider a simple example where our target probability distribution is p0(u, v), a bivariate
distribution for two random variables U and V .

Gibbs
Given x(s) = (u(s), v(s)), a new value of x(s+1) is generated as follows:
1. update U : sample u(s+1) ∼ p0(u|v(s))
2. update V : sample v(s+1) ∼ p0(v|u(s+1))

Metropolis algorithm (Ju and Jv are separate symmetric proposal distributions for U and V .)
Propose and then accept or reject changes to one element at a time:
1. update U :
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Sample µ∗ ∼ Ju(u|u(s))
Compute the acceptance ratio r = p0(u

∗, v(s))/p0(u
(s), v(s))

set u(s+1) to u∗ or u(s) with probability min(1, r) and max(0, 1− r).
2. update V :

Sample v∗ ∼ Jv(v|v(s))
Compute the acceptance ratio r = p0(u

(s+1), v∗)/p0(u
(s+1), v(s))

set v(s+1) to v∗ or v(s) with probability min(1, r) and max(0, 1− r).
Metropolis-Hastings algorithm
A Metropolis-Hastings algorithm for approximating p0(u, v) runs as follows:
1. update U :

Sample µ∗ ∼ Ju(u|u(s), v(s))
Compute the acceptance ratio

r =
p0(u

∗, v(s))

p0(u(s), v(s))
× Ju(u

(s)|u∗, v(s))
Ju(u∗|u(s), v(s))

;

set u(s+1) to u∗ or u(s) with probability min(1, r) and max(0, 1− r).
2. update V :

Sample v∗ ∼ Jv(v|u(s+1), v(s))

Compute the acceptance ratio

r =
p0(u

(s+1), v∗)

p0(u(s+1), v(s))
× Jv(v

(s)|u(s+1), v∗)

Jv(v∗|u(s+1), v(s))
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set v(s+1) to v∗ or v(s) with probability min(1, r) and max(0, 1− r).
The proposal distributions Ju and Jv are not required to be symmetric.
Ju(u

(s)|u∗,v(s))
Ju(u∗|u(s),v(s))

, the ratio of the probability of generating the current value from the proposed to the probability
of generating the proposed from the current. This can be viewed as a “correction factor”: If a value u∗ is
much more likely to be proposed than the current value u(s), then we must down-weight the probability
of accepting u∗ accordingly, otherwise the value u∗ will be overrepresented in our sequence.
relationship and distinction:

Metropolis algorithm: generate proposals from Ju and Jv and accepts them with some probability
min(1, r).
Each step of the Gibbs sampler: generate a proposal from a full conditional distribution and then
accepting it with probability 1.
Metropolis-Hastings algorithm: generalize both of these approaches by allowing arbitrary proposal
distributions (which can be any distribution).

Metropolis algorithm ∼ Metropolis-Hastings algorithm: If Ju is symmetric, meaning that J(ua|ub, v) =
J(ub|ua, v) for all possible ua, ub and v, then the correction factor in the Metropolis-Hastings acceptance
ratio is equal to 1 and the acceptance probability is the same as in the Metropolis algorithm.
Gibbs sampler ∼ Metropolis-Hastings: In Gibbs, the proposal distribution for U is the full conditional
distribution of U given V = ν. If we use the full conditionals as our proposal distributions in the
Metropolis-Hastings, then Ju(u∗ | u(s), ν(s)) = p0(u

∗ | ν(s)). The Metropolis-Hastings acceptance ratio
is then

r =
p0(u

∗, v(s))

p0(u(s), v(s))
× Ju(u

(s)|u∗, v(s))
Ju(u∗|u(s), v(s))

=
p0(u

∗, v(s))

p0(u(s), v(s))

p0(u
(s)|v(s))

p0(u∗|v(s))

=
p0(u

∗|v(s))p0(v(s))
p0(u(s)|v(s))p0(v(s))

p0(u
(s)|v(s))

p0(u∗|v(s))
=
p0(v

(s))

p0(v(s))
= 1,
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10.3.2 Why does the Metropolis-Hastings algorithm work?

A more general form of the Metropolis-Hastings algorithm: Given a current value x(s) of X ,

1. Generate x∗ from Js(x
∗|x(s))

2. Compute the acceptance ratio

r =
p0(x

∗)

p0(x(s))
× Js(x

(s)|x∗)
Js(x∗|x(s))

;

3. Sample µ ∼ uniform(0, 1). If u < r set x(s+1) = x∗, else set x(s+1) = x(s)

Note that the proposal distribution may also depend on the iteration number s. For example, the Metropolis-
Hastings algorithm presented in the last section can be equivalently described by steps 1, 2 and 3 above by
setting Js to be equal to Ju for odd values of s and equal to Jv for even values. This makes the algorithm
alternately update values of U and V .

The requirement of Js:

Js(x
∗ | x(s)) does not depend on values in the sequence previous to x(s).

choose Js so that the Markov chain is able to converge to the target distribution p0.

Theorem 10.1 (Ergodic Theorem) If {x(1), x(2), . . .} is an irreducible, aperiodic and recurrent Markov chain,
then there is a unique probability distribution π such that as s→ ∞,

Pr(x(s) ∈ A) −→ π(A) for any set A;
1
S

∑
g(x(s)) −→

∫
g(x)π(x)dx.

The distribution π is called the stationary distribution of the Markov chain, because it has the following
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property:

Ifx(s) ∼ π, andx(s+1) is generated from the Markov chain starting atx(s), thenPr(x(s+1) ∈ A) = π(A).

In other words, if you sample x(s) from π and then generate x(s + 1) conditional on x(s) from the
Markov chain, then the unconditional distribution of x(s+ 1) is π. Once you are sampling from the stationary
distribution, you are always sampling from the stationary distribution.

What is left to show is that the stationary distribution π for a Metropolis-Hastings algorithm is equal to the
distribution p0 we wish to approximate.

“Proof” that π(x) = p0(x)

1. sampling x(s) = xa from p0
2. proposing x∗ = xb from Js(x

∗|x(s))
3. accepting x(s+1) = xb

Pr(x(s) = xa, x
(s+1) = xb) = p0(xa)× Js(xb|xa)×

p0(xb)

p0(xa)

Js(xa|xb)
Js(xb|xa)

= p0(xb)Js(xa|xb).

Pr(x(s+1) = x) =
∑
xa

Pr(x(s+1) = x, x(s) = xa) =
∑
xa

Pr(x(s+1) = xa, x
(s) = x)

= Pr(x(s) = x)

Pr(x(s+1) = x) = p0(x) if Pr(x(s) = x) = p0(x).
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10.4 Combining the Metropolis and Gibbs algorithms

The case: conditional distributions are available for some parameters but not for others.

⇒ combine Gibbs and Metropolis-type proposal distributions to generate a Markov chain to approximate
the joint posterior distribution of all of the parameters.

10.4.1 A regression model with correlated errors

The ordinary regression model: Y =

 Y1
...
Yn

 ∼ multivariate normal(Xβ, σ2I).

If the error terms are not independent, but temporally correlated

⇒ we must replace the covariance matrix σ2I in the ordinary regression model with a matrix Σ that can
represent positive correlation between sequential observations ⇒ One simple and popular class of covariance
matrices for temporally correlated data are those having first-order autoregressive structure:

Σ = σ2Cρ = σ2


1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1
... ... . . .

ρn−1 ρn−2 1


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Having observed Y = y, the parameters to estimate in this model include β, σ2 and ρ. Using the
multivariate normal and inverse-gamma prior distributions for β and σ2:

{β|X,y, σ2, ρ} ∼ multivariate normal(βn,Σn),where∑
n

= (XTC−1
ρ X/σ2 + Σ−1

0 )−1

βn = Σn(X
TC−1

ρ y/σ2 + Σ−1
0 β0), and

{σ2|X,y,β, ρ} ∼ inverse-gamma([ν0 + n]/2, [ν0σ
2
0 + SSRρ]/2),where

SSRρ = (y −Xβ)TC−1
ρ (y −Xβ).

(10.2)

If β0 = 0 and Σ0 has large diagonal entries, then βn is very close to (XTC−1
ρ X)−1XTC−1

ρ y. If ρ were
known ⇒ the generalized least squares (GLS) estimate of β, a type of weighted least squares estimate that
is used when the error terms are not independent and identically distributed.
In such situations, both OLS and GLS provide unbiased estimates of β but GLS has a lower variance.
Bayesian analysis using a model that accounts for the correlated errors provides parameter estimates that
are similar to those of GLS, so for convenience we will refer to our analysis as “Bayesian GLS”.
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Given
{
β(s), σ2(s), ρ(s)

}
, a Metropolis-Hastings algorithm to generate a new set of parameter values is as

follows (use Metropolis algorithm to update ρ, use Gibbs to update β and σ2):

1. Update β: Sample β(s+1) ∼ multivarite normal (βn,Σn), where βn and Σn depend on σ2(s) and ρ(s)

2. Update σ2: Sample σ2(s+1) ∼ inverse-gamma([v0 + n]/2, [v0σ
2
0 + SSRρ]/2) , where SSRρ depends on

β(s+1) and ρ(s)

3. Update ρ:
Propose ρ∗ ∼ uniform(ρ(s) − δ, ρ(s) + δ) (a reflecting random walk which ensures that 0 < ρ < 1). If
ρ∗ < 0 then reassign it to be |ρ∗|. If ρ∗ > 1 reassign it to be 2− ρ∗

Compute the acceptance ratio

r =
p(y|X,β(s+1),σ2(s+1),ρ∗)p(ρ∗)

p(y|X,β(s+1),σ2(s+1),ρ(s))p(ρ(s))
=

p(β(s+1), σ2(s+1), ρ∗|y,X)

p(β(s+1), σ2(s+1), ρ(s)|y,X)
,

second term: the ratio as given in the definition of the Metropolis algorithm; and sample u ∼
uniform(0, 1). If u < r set ρ(s+1) = ρ∗, otherwise get ρ(s+1) = ρ(s).

10.5 Discussion and further references

One technique (modifications and extensions of MCMC methods) that is broadly applicable is automatic,
adaptive tuning of the proposal distribution in order to achieve good mixing.

Not all adaptive algorithms will result in chains that converge to the target distribution, but there are known
conditions under which convergence is guaranteed.
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11 Linear and generalized linear mixed effects models

variation in the data was represented with a between-group sampling model for group-specific means
a within-group sampling model to represent heterogeneity of observations within a group.
extend the hierarchical model to describe how relationships between variables may differ between groups.

This can be done with a regression model to describe within-group variation, and a multivariate normal
model to describe heterogeneity among regression coefficients across the groups

estimation for hierarchical generalized linear models, which are hierarchical models that have a generalized
linear regression model representing within-group heterogeneity.

11.1 A hierarchical regression model

Use ordinary regression model to describe within-group heterogeneity of observations
Use sampling model for the group-specific regression parameters to describe between-group heterogeneity.

Within-group sampling model:

Yi,j = βT
j xi,j + ϵi,j, {ϵi,j} ∼ i.i.d. normal(0, σ2), (11.1)

where xi,j is a p× 1 vector of regressors for observation i in group j.
Expressing Y1,j, . . . , Ynj ,j as a vector Yj and combining x1,j, . . . ,xnj ,j into an nj × p matrix Xj. Then the
within-group sampling model:

Yj ∼ multivariate normal(Xjβj, σ
2I),
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with the group-specific data vectors Y1, . . . ,Ym being conditionally independent given β1, . . . , βm and σ2

Between-group sampling model:
Describing the heterogeneity among the regression coefficients β1, · · · ,βm

If no prior information distinguishing the different groups ⇒ model them as being exchangeable, or
(roughly) equivalently, as being i.i.d. from some distribution representing the sampling variability across
groups.
The normal hierarchical regression model describes the across-group heterogeneity with a multivariate
normal model, so that:

β1, . . . ,βm ∼ i.i.d. multivariate normal(θ,Σ). (11.2)

Figure 3: the multivariate normal distribution for β1, · · · ,βm is not a prior distribution representing uncer-
tainty about a fixed but unknown quantity. Rather, it is a sampling distribution representing heterogeneity
among a collection of objects (likelihood ?). The values of θ and Σ are fixed but unknown parameters to
be estimated.

Figure 3: A graphical representation of the hierarchical normal regression model.
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Hierarchical regression model; another name: linear mixed effects model, motivated by an alternative
parameterization of Eqs 11.1 and 11.2.
We can rewrite the between-group sampling model as:

βj = θ + γj

γ1 . . . ,γm ∼ i.i.d. multivariate normal(0,Σ).

Hierarchical regression model:
Plugging the above rewrite into within-group regression model gives

Yi,j = βT
j xi,j + ϵi,j = θTxi,j + γT

j xi,j + ϵi,j.

In this parameterization θ is referred to as a fixed effect as it is constant across groups, whereas γ1, · · · , γm
are called random effects, as they vary.
Hierarchical regression model, another name: “mixed effects model”, coming from the fact that the
regression model contains both fixed and random effects. Although for our particular example the regressors
corresponding to the fixed and random effects are the same, this does not have to be the case.
A more general model:

Yi,j = θTxi,j + γT
j zi,j + ϵi,j,

wherexi,j and zi,j could be vectors of different lengths which may or may not contain overlapping variables.
xi,j contain group-specific regressors (constant across all observations in the same group).
xi,j are not generally included in zi,j, as there would be no information in the data with which to
estimate the corresponding group-specific regression coefficients.
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Given a prior distribution for (θ,Σ, σ2) and having observed Y1 = y1, · · · ,Ym = ym, a Bayesian analysis
proceeds by computing the posterior distribution:

p(β1, . . . ,βm,θ,Σ, σ
2|X1, . . . ,Xm,y1, . . . ,ym).

If semiconjugate prior distributions are used for θ, Σ and σ2, then the posterior distribution can be approximated
quite easily with Gibbs sampling. The classes of semiconjugate prior distributions for θ and Σ are as in the
multivariate normal model discussed in Chapter 7. The prior for σ2 is the usual inverse-gamma distribution

θ ∼ multivariate normal(µ0,Λ0)

Σ ∼ inverse-Wishart(η0,S−1
0 )

σ2 ∼ inverse-gamma(ν0/2, ν0σ20/2)
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11.2 Full conditional distributions

Full conditional distributions ⇒ iteratively sample from them to approximate the joint posterior distribution

11.2.1 Full conditional distributions of β1, . . . ,βm

Our hierarchical regression model shares information across groups via the parameters θ, Σ and σ2. As
a result, conditional on θ, Σ and σ2 the regression coefficients β1, · · · ,βm are independent. Referring to the
graph in Figure 3, from the perspective of a given βj the model looks like an ordinary one-group regression
problem where the prior mean and variance for βj are θ and Σ.

The results of Section 9.2.1 show that {βj|yj,Xj,θ,Σ, σ
2} has a multivariate normal distribution with

Var[βj | yj,Xj, σ
2, θ,Σ] = (Σ−1 +XT

j Xj/σ
2)−1

E[βj | yj,Xj, σ
2, θ,Σ] = (Σ−1 +XT

j Xj/σ
2)−1(Σ−1θ +XT

j yj/σ
2).

11.2.2 Full conditional distributions of θ,Σ

Sampling model for the βj’s: they are i.i.d. samples from a multivariate normal population with θ and
Σ. (C7: The full conditional distribution of a population mean is multivariate normal with expectation equal
to a combination of the prior expectation and the sample mean, and precision equal to the sum of the prior
and data precisions.) In the hierarchical regression model, given Σ and our sample of regression coefficients
β1, · · · ,βm, the full conditional distribution of θ is as follows:
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{θ | β1, . . . ,βm,Σ} ∼ multivariate normal(µm,Λm) , where

Λm = (Λ−1
0 +mΣ−1)−1, µm = Λm(Λ

−1
0 µ0 +mΣ−1β̄), β̄ is the vector average 1/m

∑
βj.

C7: The full conditional distribution of a covariance matrix is an inverse-Wishart distribution, with sum of
squares matrix equal to the prior sum of squares S0 plus the sum of squares from the sample:

{Σ | θ,β1, . . . ,βm} ∼ inverse-Wishart (η0 +m, [S0 + Sθ]
−1),where Sθ =

m∑
j=1

(βj − θ)(βj − θ)T .

Note that Sθ depends on θ and so must be recomputed each time θ is updated in the Markov chain.

11.2.3 Full condition distribution of σ2

Parameter σ2 represents the error variance, assumed to be common across all groups. As such, conditional
on β1, · · · ,βm, the data provide information about σ2 via the sum of squared residuals from each group:

σ2 ∼ inverse-gamma ([ν0 +
∑

nj]/2, [ν0σ
2
0 + SSR]/2),where SSR =

m∑
j=1

nj∑
i=1

(yi,j − βT
j xi,j)

2.

Note that SSR depends on the value of βj, and so SSR must be recomputed in each scan of the Gibbs sampler
before σ2 is updated.
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11.3 Generalized linear mixed effects models

A generalized linear mixed effects model combines aspects of linear mixed effects models with those of
generalized linear models described in Chapter 10.

Such models are useful when we have a hierarchical data structure but the normal model for the within-group
variation is not appropriate.

Eg: if the variable Y were binary or a count, then more appropriate models for within-group variation
would be logistic or Poisson regression models, respectively.

A basic generalized linear mixed model is as follows:

β1, . . . ,βm ∼ i.i.d. multivariate normal (θ,Σ)

p(yj | Xj,βj, γ) =

nj∏
i=1

p(yi,j | βT
j xi,j, γ),

with observations from different groups also being conditionally independent.

In this formulation p(y | βTx, γ) is a density whose mean depends onβTx, and γ is an additional parameter
often representing variance or scale. For example:

In the normal model p(y | βTx, γ) = dnorm(y,βTx, γ1/2) where γ represents the variance.
In the Poisson model p(y | βTx) = dpois(exp{βTx}), and there is no γ parameter.

155



11.3.1 A Metropolis-Gibbs algorithm for posterior approximation

Estimation for the linear mixed effects model was straightforward because the full conditional distribution
of each parameter was standard, allowing for the easy implementation of a Gibbs sampling algorithm.
But for nonnormal generalized linear mixed models, only θ and Σ have standard full condi. distributions.
Thus, use a Metropolis-Hastings algorithm to approximate the posterior distribution of the parameters,
using a combination of Gibbs steps for updating (θ,Σ) with a Metropolis step for updating each βj.

We assume there is no γ parameter. If there is such a parameter, it can be updated using a Gibbs step
if a full conditional distribution is available, and a Metropolis step if not.

1. Gibbs steps for θ,Σ

As in the linear mixed effects model, the full conditional distributions of θ and Σ depend only on
β1, · · · ,βm. Thus, the form of p(y | βTx) has no effect on the full conditional distributions of θ and
Σ. Whether p(y | βTx) is a normal/Poisson/some other generalized linear model, the full conditional
distributions of θ and Σ will be the multivariate normal and inverse-Wishart distributions in Section 11.2.

2. Metropolis step for βj

Updatingβj in a Markov chain: proceed by proposing a new value ofβ∗
j based on the current parameter val-

ues and accepting or rejecting it with appropriate probability. Standard proposal distribution: multivariate
normal distribution with mean (current value β

(s)
j ) and proposal variance V (s)

j . Metropolis step:
(a). Sample β∗

j ∼ multivariate normal(β(s)
j , V

(s)
j )

(b). Compute the acceptance ratio r =
p(yj|Xj,β

∗
j )p(β

∗
j |θ(s),Σ(s))

p(yj|Xj,β
(s)
j )p(β

(s)
j |θ(s),Σ(s))

.

(c). Sample u ∼uniform(0, 1). Set β(s+1)
j to β∗

j if u < r and to β
(s)
j if u > r

156



3. A Metropolis-Hastings approximation algorithm
Putting these steps together⇒ the following Metropolis-Hastings algorithm for approximating p(β1, . . . ,βm,θ,Σ|X1, . . . ,Xm,y1, . . . ,ym):
Given current values at scan s of the Markov chain, we obtain new values as follows:
(a). Sample θ(s+1) from its full conditional distribution
(b). Sample Σ(s+1) from its full conditional distribution
(c). For each j ∈ {1, . . . ,m},

propose a new value β∗
j ;

set β(s+1)
j equal to β∗

j or β(s)
j with the appropriate probability.

11.4 Posterior analysis of the math score data

The math score data described in Section 8.4: including math scores of 10th grade children from 100
different large urban public high schools.

In Chapter 8: estimated school-specific expected math scores, as well as how these expected values varied
from school to school.
Suppose we are interested in examining the relationship between math score and another variable, socioe-
conomic status (SES), which was calculated from parental income and education levels for each student in
the dataset.

In Chapter 8 we quantified the between-school heterogeneity in expected math score with a hierarchical
model. It seems possible that the relationship between math score and SES might vary from school to school
as well. A quick and easy way to assess this possibility is to fit a linear regression model of math score as a
function of SES for each of the 100 schools in the dataset. To make the parameters more interpretable we will
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center the SES scores within each school separately, so that the sample average SES score within each school is
zero. As a result, the intercept of the regression line can be interpreted as the school-level average math score.

Figure 4: Least squares regression lines for math score data, and plots of estimates versus group sample size.

The first panel of Figure 4: least squares estimates of the regression lines for the 100 schools, along with
an average of these lines in black. A large majority show an increase in expected math score with increasing
SES, although a few show a negative relationship. The second and third panels of the figure relate the least
squares estimates to sample size.

Notice that schools with the highest sample sizes have regression coefficients that are generally close
to the average, whereas schools with extreme coefficients are generally those with low sample sizes. This
phenomenon is reminiscent of what we discussed in Section 8.4: The smaller the sample size for the group,
the more probable that unrepresentative data are sampled and an extreme least squares estimate is produced.As
in Chapter 8, our remedy to this problem will be to stabilize the estimates for small sample size schools by
sharing information across groups, using a hierarchical model.
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To analyze the math score data, use a prior distribution that is similar in spirit to the unit information priors
that were discussed in Chapter 9.

Take µ0, the prior expectation of θ, to be equal to the average of the ordinary least squares regression
estimates and the prior variance Λ0 to be their sample covariance.
Such a prior distribution represents the information of someone with unbiased but weak prior information.
For example, a 95% prior confidence interval for the slope parameter θ2 under this prior is (3.86,8.60),
which is quite a large range considering what the extremes of the interval imply in terms of average change
in score per unit change in SES score.
Take the prior sum of squares matrix S0 to be equal to the covariance of the least squares estimate, but take
the prior degrees of freedom η0 to be p+2 = 4, so that the prior distribution of Σ is reasonably diffuse but
has an expectation equal to the sample covariance of the least squares estimates.
Take σ20 to be the average of the within-group sample variance but set ν0 = 1.

Running a Gibbs sampler for 10,000 scans and saving every 10th scan produces a sequence of 1,000 values
for each parameter, each sequence having a fairly low autocorrelation. As usual, we can use these simulated
values to make Monte Carlo approximations to various posterior quantities of interest.

For example, the first plot in Figure 11.3 shows the posterior distribution of θ2, the expected within-school
slope parameter. A 95% quantile-based posterior confidence interval for this parameter is (1.83, 2.96), which,
compared to our prior interval of (-3.86, 8.60), indicates a strong alteration in our information about θ2.
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Figure 5: Relationship between SES and math score. The first panel: the posterior density of the expected
slope θ2 of a randomly sampled school, and the posterior predictive distribution of a randomly sampled slope.
The second panel: posterior expectations of the 100 school-specific regression lines, with black average line.

The fact that θ2 is extremely unlikely to be negative only indicates that the population averages of school-
level slopes is positive. It does not indicate that any given within-school slope cannot be negative. To clarify
this distinction, the posterior predictive distribution of β̃2, the slope for a to-be-sampled school, is plotted in the
same figure. Samples from this distribution can be generated by sampling a value β̃2(s) from a multivariate
normal(θ(s),Σ(s)) distribution for each scan s of the Gibbs sampler. Notice that this posterior predictive
distribution is much more spread out than the posterior distribution of θ2, reflecting the heterogeneity in slopes
across schools. Using the Monte Carlo approximation, we have Pr(β̃2 < 0 | y1, |,ym,X1, · · · ,Xm) ≈ 0.07,
which is small but not negligible.
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The second panel in Figure 5 plots posterior expectations of the 100 school-specific regression lines, with
the line given by the posterior mean of θ in black. Comparing this to the first panel of Figure 4 indicates how
the hierarchical model is able to share information across groups, shrinking extreme regression lines towards
the across-group average. Particularly, hardly any of the slopes are negative when we share information across
groups.

11.5 Discussion and further references

Posterior approximation via MCMC for hierarchical models can suffer from poor mixing. One reason for
this is that many of the parameters in the model are highly correlated, and generating them one at a time in the
Gibbs sampler can lead to a high degree of autocorrelation.

For example, θ and the βj’s are positively correlated, and so an extreme value of θ at one iteration can lead
to extreme values of the βj’s when they get updated, especially if the amount of within-group data is low. This
in turn leads to an extreme value of θ at the next iteration.
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12 Latent variable methods for ordinal data

Motivation

Many datasets include variables whose distributions cannot be represented by typical distributions.
Such variables are binned into ordered categories, the number of which may vary from survey to survey.

In such situations, interest often lies in the associations between the variables: Is the relationship between
two variables positive, negative or zero? What happens if we “account” for a third variable?

For normally distributed data: these types of questions can be addressed with the multivariate normal and
linear regression models of Chapters 7 and 9.
For nonnormal data: extends these models to this situation by expressing non-normal random variables as
functions of unobserved, “latent” normally distributed random variables.
⇒ Multivariate normal and linear regression models then can be applied to the latent data.

12.1 Ordered probit regression and the rank likelihood

DEG Example

The relationship between the educational attainment and number of children of individuals in a population.
Additionally, an individual’s educational attainment may be influenced by their parent’s education level.

Data: DEGi: the highest degree obtained by individual i, CHILDi: their number of children, PDEGi: the
binary indicator of whether or not either parent of i obtained a college degree.
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First, investigate the relationship between the variables with a linear regression model:

DEGi = β1 + β2 × CHILDi + β3 × PDEGi + β4 × CHILDi × PDEGi + ϵi,

where we assume that ϵ1, · · · , ϵn ∼ i.i.d. normal(0, σ2).

However, such a model would be inappropriate for a couple of reasons:

1. Since the variable DEG takes on only a small set of discrete values, the normality assumption of the
residuals will certainly be violated.

2. The regression model imposes a numerical scale to the data that is not really present: A bachelor’s degree
is not “twice as much” as a high school degree

Variables for which there is a logical ordering of the sample space are known as ordinal variables.
The discrete variables DEG and CHILD are ordinal variables, as are “continuous” variables like height or
weight. However, CHILD, height and weight are measured on meaningful numerical scales, whereas DEG is
not.

DEG is ordinal but not numeric, whereas CHILD is ordinal, numeric and discrete. Variables like height or
weight are ordinal, numeric and continuous.

The term “ordinal”: variable for which there is a logical ordering of the sample space.
The term “numeric”: variables that have meaningful numerical scales, and “continuous” if a variable can
have a value that is (roughly) any real number in an interval.
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12.1.1 Probit regression

It is natural to think of many ordinal, non-numeric variables as arising from some underlying numeric
process. Eg: the amount of effort a person puts into formal education may lie within a continuum, but a survey
may only record a rough, categorized version of this variable, such as DEG.

This idea motivates a modeling technique known as ordered probit regression (model): relate a variable
Y to a vector of predictors x via a regression in terms of a latent variable Z. More precisely, the model is

ϵ1, . . . , ϵn ∼ i.i.d. normal(0, 1) (12.1)
Zi = βTxi + ϵi (12.2)
Yi = g(Zi), (12.3)

where β and g are unknown parameters.

The variance of ϵ1, · · · , ϵn is one, because the scale of the distribution of Y can already be represented by
g, as g is allowed to be any non-decreasing function.
β: regression coefficients, describing the relationship between the explanatory variables and the unobserved
latent variable Z.
g: non-decreasing function, which relates the value of Z to the observed variable Y ⇒ the sign of a
regression coefficient βj indicates whether Y is increasing or decreasing in xj. Besides, g can represent
the location of the distribution of Y , and so we do not need to include an intercept term in the model.
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If the sample space for Y takes on K values, say {1, ..., K}, then the function g can be described with only
K − 1 ordered parameters g1 < g2 < · · · < gK−1 as follows:

y = g(z) = 1 if −∞ = g0 < z < g1

= 2 if g1 < z < g2
...
= K if gK−1 < z < gK = ∞.

(12.4)

{g1, g2, · · · , gK−1}, maybe “thresholds”, so moving z past a threshold moves y into the next highest category.

Unknown parameters: β and g1, · · · , gK−1. Use normal prior distributions for these, the joint posterior
distribution of {β, g1, · · · , gK−1, Z1, · · · , Zn} given Y = y = (y1, · · · , yn) can be approximated by Gibbs.

1. Full conditional distribution of β
Given Y = y, Z = z, and g = (g1, · · · , gK−1), the full conditional distribution of β depends only on z

and satisfies p(β | y, z, g) ∝ p(β)p(z | β).
Just as in ordinary regression, a multivariate normal prior distribution for β gives a multivariate normal
posterior distribution. For example, if we use β ∼ multivariate normal(0, n(XTX)−1), then p(β | z) is
multivariate normal with

p(β | y, z, g) ∝ p(β)p(z | β)

Var[β | z] = n

n+ 1
(XTX)−1, and

E[β | z] = n

n+ 1
(XTX)−1XTz.
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2. Full conditional distribution of Z
Under the sampling model, the conditional distribution of Zi given β is Zi ∼normal(βTxi, 1).
Given g, observing Yi = yi tells us that Zi must lie in the interval (gyi−1, gyi). Letting a = gyi−1 and
b = gyi, the full conditional distribution of Zi given {β,y, g} is:

p(zi | β,y, g) ∝ dnorm(zi,β
Txi, 1)× δ(a,b)(zi).

This is the density of a constrained normal distribution. To sample a value x from a normal(µ, σ2)
distribution constrained to the interval (a, b), we perform the following two steps:
(a). sample u ∼ uniform(Φ[(a− µ)/σ],Φ[(b− µ)/σ])

(b). x = µ+ σΦ−1(u)

where Φ and Φ−1 are the cdf and inverse-cdf of the standard normal distribution.
3. Full conditional distribution of g

Suppose the prior distribution for g is some arbitrary density p(g).
Given Y = y and Z = z, we know from Eq 12.4 that gk must be higher than all zi’s for which yi = k and
lower than all zi’s for which yi = k + 1.
Letting ak = max{zi : yi = k} and bk = min{zi : yi = k + 1}. The full conditional distribution of
g is then proportional to p(g) but constrained to the set {g : ak < gk < bk}. For example, if p(g) is
proportional to the product

∏K−1
k=1 dnorm(gk, µk, σk) but constrained so that g1 < · · · < gK−1, then the full

conditional density of gk is a normal (µk, σ2k) density constrained to the interval (ak, bk).

12.1.2 Transformation models and the rank likelihood

DEG Example (cont.): Let Yi be DEGi, xi = (CHILDi,PDEGi,CHILDi × PDEGi).
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We need to specify a prior distribution for β and the transformation g(z), as specified by the vector g of
K − 1 threshold parameters.

While simple default prior distributions for β exist (such as Zellner’s g-prior), the same is not true
for g. Coming up with a prior distribution for g that represents actual prior information seems like a
difficult task. Of course, this task is much harder if the number of categories K is large.

An alternative approach to estimating β that does not require us to estimate the function g(z):
If the Zi’s were observed directly: ignore Eq.12.3 of the model, left with an ordinary regression
problem without having to estimate the transformation g(z).
We do not observe the Zi’s directly, but there is information in the data about the Zi’s that does not
require us to specify g(z): Since we know that g is non-decreasing, we do know something about the
order of the Zi’s. For example, if our observed data are such that y1 > y2, then since yi = g(Zi), we
know that g(Z1) > g(Z2), this means that we know Z1 > Z2. In other words, having observed Y = y,
we know that the Zi’s must lie in the set

R(y) = {z ∈ Rn : zi1 < zi2 if yi1 < yi2}.

Since the distribution of theZi’s does not depend on g, the probability that Z ∈ R(y) for a given y also
does not depend on the unknown function g. Thus we base our posterior inference on the knowledge
that Z ∈ R(y). Our posterior distribution for β in this case is given by

p(β | Z ∈ R(y)) ∝ p(β)× Pr(Z ∈ R(y) | β) = p(β)×
∫
R(y)

n∏
i=1

dnorm(zi,β
Txi, 1)dzi.

As a function of β, the probability Pr(Z ∈ R(y) | β) is known as the rank likelihood.
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1. For continuous data, it contains the same information about y as knowing the ranks of {y1, · · · , yn},
i.e. which one has the highest value, which one has the second highest value, etc.

2. For discrete data, observing R(y) is not exactly the same as knowing the ranks
3. But for simplicity we will still refer to Pr(Z ∈ R(y) | β) as the rank likelihood, whether or not Y

is discrete or continuous.
Important: for any ordinal outcome variable Y (non-numeric, numeric, discrete or continuous), informa-
tion about β can be obtained from Pr(Z ∈ R(y) | β) without having to specify g(z).

For any given β the value of Pr(Z ∈ R(y) | β) involves a complicated integral.
However, by estimating Z simultaneously with β we can obtain an estimate of β without ever having
to numerically compute Pr(Z ∈ R(y) | β).
The joint posterior distribution of {β,Z} can be approximated by using Gibbs sampling (sampling
from full conditional distributions).
1. The full conditional distribution of β:

Given a current value z of Z, the full conditional density p(β | Z = z,Z ∈ R(y)) reduces to
p(β | Z = z) because knowing the value of Z is more informative than knowing just that Z lies
in the set R(y).

2. A multivariate normal prior distribution for β:
results in a multivariate normal full conditional distribution, as before.

3. The full conditional distributions of the Zi’s:
Consider the full conditional distribution of Zi given {β,Z ∈ R(y), z−i}, where z−i denotes
the values of all of the Z’s except Zi. Conditional on β, Zi is normal(βTxi, 1). Conditional on
{β, Z ∈ R(y), z−i}, the density of Zi is proportional to a normal density but constrained by the
fact that Z ∈ R(y). Let’s recall the nature of this constraint: yi < yj implies Zi < Zj , and yi > yj
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implies Zi > Zj . This means that Zi must lie in the following interval:

max{zj : yj < yi} < Zi < min{zj : yi < yj}.

Letting a and b denote the numerical values of the lower and upper endpoints of this interval, the
full conditional distribution of Zi is then

p(zi | β,Z ∈ R(y), z−i) ∝ dnorm(zi,β
Txi, 1)× δ(a,b)(zi).

This full conditional distribution is exactly the same as that ofZi in the ordered probit model, except
that now the constraints on Zi are determined directly by the current value Z−i, instead of on the
threshold variables r. As such, sampling from this full conditional distribution is very similar to
sampling from the analogous distribution in the probit regression model.

DEG Example (cont.): For the educational attainment data the posterior distribution of β based on the
rank likelihood is very similar to the one based on the full ordered probit model.

The full ordered probit model and the rank likelihood

In general, if K is small and n is large, we expect the two methods to behave similarly.

The rank likelihood approach is applicable to a wider array of datasets since with this approach, Y is
allowed to be any type of ordinal variable, discrete or continuous.
Drawback of the rank likelihood: it does not provide inference about g(z) describing the relationship
between latent and observed variables. If this parameter is of interest, the rank likelihood is not appropriate;
but if interest lies only in β, this model provides a simple alternative to the ordered probit model.
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12.2 The Gaussian copula model

Above regression model limiting: only describes the conditional distribution of 1 variable given the others.
We may be interested in the relationships among all of the variables in a dataset.

If the variables were approximately jointly normally distributed, or at least were all measured on a
meaningful numerical scale ⇒ describe relationships among variables with the sample covariance
matrix or a multivariate normal model.
However, such a model is inappropriate for nonnumeric ordinal variables like INC, DEG and PDEG.

To accommodate variables such as these we can extend the ordered probit model above to a latent,
multivariate normal model that is appropriate for all types of ordinal data, both numeric and non-numeric.

Let Y1, · · · ,Yn be i.i.d. random samples from a p-variate population, the latent normal model is

Z1, . . . ,Zn ∼ i.i.d. multivariate normal(0,Ψ)

Yi,j = gj(Zi,j),
(12.5)

where g1, . . . , gp are non-decreasing functions, Ψ is a correlation matrix, having diagonal entries equal to 1.

The matrix Ψ represents the joint dependencies among the variables, and the functions g1, . . . , gp represent
their marginal distributions. To see how the gj’s represent the margins, let’s calculate the marginal cdf Fj(y)

of a continuous random variable Yi,j under the model given by Eq 12.5.
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Recalling the definition of the cdf, we have

Fj(y) = Pr(Yi,j ≤ y)

= Pr(gj(Zi,j) ≤ y) , since Yi,j = gj(Zi,j)

= Pr(Zi,j ≤ g−1
j (y))

= Φ(g−1
j (y)),

where Φ(z) is the cdf of the standard normal distribution. The last line holds because the diagonal entries of Ψ
are all equal to 1, and so the marginal distribution of each Zi,j is a standard normal distribution with cdf Φ(z).

Fj(y) = Φ(g−1
j (y))⇒ Marginal distributions of the Yj’s are fully determined by the gj’s, not the matrix Ψ.

A model having separate parameters for the univariate marginal distributions and the multivariate depen-
dencies is generally called a copula model.
The model given by Eq 12.5, where the dependence is described by a multivariate normal distribution, is
called the multivariate normal copula model.
The term “copula” refers to the method of “coupling” a model for multivariate dependence (such as the
multivariate normal distribution) to a model for the marginal distributions of the data.

As shown above, a copula model separates the parameters for the dependencies among the variables Ψ from
the parameters describing their univariate marginal distributions g1, . . . , gp. This separation comes in handy if
we are primarily interested in the dependencies among variables and not the univariate scales on which they
were measured. In this case, g1, . . . , gp functions are nuisance parameters and Ψ is parameter interested.

Using an extension of the rank likelihood described in the previous section, we can obtain a posterior
distribution forΨwithout having to estimate or specify prior distributions for the nuisance parameters g1, . . . , gp.
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12.2.1 Rank likelihood for copula estimation

The unknown parameters in the copula model: the matrixΨ and the nondecreasing functions g1, . . . , gp.
Bayesian inference for all of these parameters would require that we specify a prior for Ψ as well as p prior
distributions over the complicated space of arbitrary non-decreasing functions.

If not interested in g1, . . . , gp ⇒ Use a version of the rank likelihood, quantifies information about
Z1, . . . ,Zn without having to specify these nuisance parameters.
Each gj: non-decreasing ⇒ observe n× p data matrix Y: the matrix of latent variables Z lie in set:

R(Y) = {Z : zi1,j < zi2,jif yi1,j < yi2,j}. (12.6)

The probability of this event, Pr(Z ∈ R(Y) | Ψ), does not depend on g1, . . . , gp. As a function of Ψ,
Pr(Z ∈ R(Y) | Ψ) is called the rank likelihood for the multivariate normal copula model.

Compute the likelihood for a given Ψ: difficult, but as in Sec 12.1.2 we make an MCMC approximation to
p(Ψ,Z | Z ∈ R(Y)) using Gibbs sampling, provided we use a prior for Ψ based on the IW distribution.

Full conditional distribution of Ψ (A parameter-expanded prior distribution for Ψ)

Unfortunately there is no simple conjugate class of prior distributions for our correlation matrix Ψ.

As an alternative, let’s consider altering Eq.12.5(1) to be

Z1, . . . ,Zn ∼ i.i.d. multivariate normal(0,Σ),

where Σ is an arbitrary covariance matrix, not restricted to be a correlation matrix like Ψ.
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In this case, a natural prior distribution for Σ: an inverse-Wishart distribution, which would give an inverse-
Wishart full conditional distribution and thus make posterior inference available via Gibbs sampling.
However, careful inspection of the rank likelihood indicates that it does not provide us with a complete
estimate of Σ.

Specifically, the rank likelihood contains only information about the relative ordering among the Zi,j’s,
and no information about their scale. For example, if Z1,j and Z2,j are two i.i.d. samples from a
normal(0, σ2j ) distribution, then the probability that Z1,j < Z2,j does not depend on σ2j .

For this reason we say that the diagonal entries of Σ are non-identifiable in this model, meaning that the
rank likelihood provides no information about what the diagonal should be.

In a Bayesian analysis, the posterior distribution of any non-identifiable parameter is determined by the
prior distribution, and so in some sense the posterior distribution of such a parameter is not of interest.

However, to each covariance Σ there corresponds a unique correlation matrix Ψ, obtained by the function:

Ψ = h(Σ) = {σi,j/
√
σ2i σ

2
j}.

The value of Ψ is identifiable from the rank likelihood, and so one estimation approach for the Gaussian copula
model is to reparameterize the model in terms of a non-identifiable covariance matrix Σ, but focus our posterior
inference on the identifiable correlation matrix Ψ = h(Σ).

This technique of modeling in terms of a non-identifiable parameter in order to simplify calculations is
referred to as parameter expansion, and has been used in the context of modeling multivariate ordinal data.
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To summarize, we will base our posterior distribution on

Σ ∼ inverse-Wishart(ν0,S
−1
0 )

Z1, . . . ,Zn ∼ i.i.d. multivariate normal(0,Σ)

Yi,j = gj(Zi,j),

(12.7)

but our estimation and inference will be restricted to Ψ = h(Σ). Interestingly, the posterior distribution for Ψ
obtained from this prior and model is exactly the same as that which would be obtained from the following:

Σ ∼ inverse-Wishart(ν0,S
−1
0 )

Ψ = h(Σ)

Z1, . . . ,Zn ∼ i.i.d. multivariate normal(0,Ψ)

Yi,j = gj(Zi,j).

(12.8)

The non-identifiable model (Eq12.7) gives the same posterior distribution for Ψ as the identifiable model in
Eq12.8 in which Ψ prior distribution is defined by {Σ ∼ IW(ν0,S

−1
0 ),Ψ = h(Σ)}. Only difference: the

Gibbs sampling scheme for Eq12.7 is easier to formulate. The equivalence of these models relies on the scale
invariance of the rank likelihood, and so will not generally hold for other types of models involving correlation
matrices.

Full conditional distribution of Σ

If the prior distribution forΣ: inverse-Wishart(ν0,S−1
0 ), then, as Section 7.3, the full conditional distribution

of Σ is also inverse-Wishart. Noting that the probability density of the n× p matrix Z can be written as
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p(Z | Σ) =
n∏

i=1

(2π)−p/2|Σ|−1/2 exp{−1

2
ziΣ

−1zi} = (2π)−np/2|Σ|−n/2 exp{−tr(ZTZΣ−1)/2},

The full conditional distribution p(Σ | Z,Z ∈ R(Y)) = p(Σ | Z) is then given by

p(Σ | Z) ∝ p(Σ)× p(Z | Σ)
∝ |Σ|−(ν0+p+1)/2 exp{−tr(S0Σ

−1)/2} × |Σ|−n/2 exp{−tr(ZTZΣ−1)/2}
= |Σ|−([ν0+n]+p+1)/2 exp{−tr([S0 + ZTZ]Σ−1/2}

which is proportional to an inverse-Wishart (ν0 + n, [S0 + ZTZ]−1) density.

Full conditional distribution of Z

Section 7.6: If Z is a random multivariate normal(0,Σ) vector, then the conditional distribution of Zj ,
given the other elements Z−j = z−j, is a univariate normal distribution with mean and variance given by

E[Zj | Σ, z−j] = Σj,−j(Σ−j,−j)
−1z−j

Var[Zj | Σ, z−j] = Σj,j − Σj,−j(Σ−j,−j)
−1Σ−j,j,

where Σj,−j refers to the jth row of Σ with the jth column removed, and Σ−j,−j refers to Σ with both the jth
row and column removed. If in addition we condition on the information that Z ∈ R(Y), then we know that
max{zk,j : yk,j < yi,j} < Zi,j < min{zk,j : yi,j < yk,j}. These two pieces of information imply that the full
conditional distribution of Zi,j is a constrained normal distribution.
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12.3 Discussion and further references

Normally distributed latent variables are often used to induce dependence among a set of non-normal
observed variables.

The rank likelihood is based on the marginal distribution of the ranks, and so is called a marginal likelihood.
Marginal likelihoods are typically constructed so that they use the information in the data that depends only
on the parameters of interest, and do not use any information that depends on nuisance parameters. Marginal
likelihoods do not generally provide efficient estimation, as they throw away part of the information in the data.
However, they can turn a very difficult semiparametric estimation problem into essentially a parametric one.
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